Г

Гаагская конвенция 1970 о борьбе с незаконным захватом воздушных судов. Участниками конвенции по состоянию на 1990 являлись 142 государства (СССР с 1970). Г. к. 1970 заключена в целях предотвращения актов незаконного захвата воздушных судов, принятия соответствующих мер для наказания преступников. Конвенция считает лицо, находящееся на борту судна во время его полёта, совершившим преступление, если оно захватило воздушное судно путём насилия, угрозы или запугивания, либо осуществило контроль над таким судном, либо пыталось совершить такое действие, либо было соучастником лица, его совершившего (ст. 1). Государства — участники Г. к. 1970 обязуются принимать в отношении лиц, совершивших такие преступления, суровые меры наказания.

Конвенция предусматривает правила, при которых государства-участники могут устанавливать свою юрисдикцию над таким преступлением и любыми другими актами насилия в отношении пассажиров или экипажа, совершёнными предполагаемым преступником. Процессуальные меры, которые могут принимать государства (заключение под стражу, предварительное расследование фактов, обеспечение контакта задержанного лица с представителем государства его гражданства, уведомление государства регистрации и другие государств о факте и причинах задержания и другие), во многом аналогичны соответствующим нормам Токийской конвенции 1963.

Важное значение имеет статья 7 конвенции, предусматривающая, что государство — ее участник, на территории которого оказался предполагаемый преступник, в случае, если оно не выдаёт такого преступника другому государству, обязано без каких-либо исключений и независимо от того, на какой территории совершено преступление, передать дело своим компетентным органам для уголовного преследования. Эти органы принимают решение по делу в соответствии с законом своего государства. Г. к. 1970 устанавливает неотвратимость выдачи преступника или его наказания, когда любое из действий, упомянутых в статье 1, совершено или близко к совершению, государства принимают все надлежащие меры для восстановления или сохранения контроля законного командира над воздушным судном. Пассажирам и экипажу должно быть оказано содействие в скорейшем продолжении следования к месту назначения, а воздушное судно и груз должны быть возвращены законным владельцам.

Г. к. 1970 применяется только в том случае, если место взлёта или фактической посадки воздушного судна находится вне пределов государства его регистрации (в противном случае применяется национальное законодательство).

Квалификация акта “незаконный захват” в качестве преступления, согласно положениям конвенции, ограничена периодом нахождения воздушного судна в полёте (то есть с момента закрытия всех внешних дверей воздушного судна после погрузки до момента открытия любой из таких дверей для выгрузки). В случае вынужденной посадки считается, что полёт происходит до тех пор, пока компетентные власти не примут на себя ответственность за воздушное судно и за лиц и имущество, находящихся на борту.

Лит.: Международное воздушное право, кн. 1, М. 1980.

Ю. Н. Малеев.

Гаагский протокол 1955 — см. в статье Варшавская конвенция 1929.

габаритные размеры самолёта, вертолёта — предельные значения длины и высоты, полного размаха крыла (у самолёта), диаметра несущего винта (у вертолёта) и т. п. (см. рис. 1, 2). Г. р. летательного аппарата определяют необходимые размеры производственных помещений, ангаров, площадок для стоянки на открытом воздухе и т. д.

Рис. 1. Габаритные размеры самолёта: lс — длина; Hс — высота; lкр — размах крыла.

Рис. 2. Габаритные размеры вертолёта: l1 — длина вертолёта с вращающимися винтами; l2 — длина вертолёта со снятыми винтами; H — высота вертолёта с вращающимся рулевым винтом; h — высота вертолета; B — ширина вертолета; D — диаметр несущего винта,

Гаврилов Сергей Алексеевич (1914—1983) — советский конструктор авиационных двигателей, доктор технических наук (1978), Герой Социалистического Труда (1975). Окончил Рыбинский авиационный институт (1940). Работал в КБ на авиамоторных заводах в Рыбинске и Уфе. Участвовал в разработке и организации серийного производства первых реактивных двигателей. С 1962 главный конструктор опытно-конструкторского бюро. Под его руководством создан ряд авиадвигателей оригинальной конструкции для самолётов А. И. Микояна, П. О. Сухого и др. Государственная премия СССР (1977). Награждён 2 орденами Ленина, орденом Отечеств, войны 2-й степени, 3 орденами Трудового Красного Знамени, орденами Дружбы Народов, “Знак Почёта”, медалями.

С. А. Гаврилов.

Гагарин Юрий Алексеевич (1934—1966) — советский лётчик, полковник, лётчик-космонавт СССР (1961), Герой Советского Союза (1961). Первый человек, совершивший полёт в космос. Окончил 1-е Чкаловское военное авиационное училище лётчиков (1957), Военно-воздушную инженерную академию имени профессора Н. Е. Жуковского (1968). 12 апреля 1961 совершил полёт в космос на космическом корабле “Восток”, облетев земной шар за 1 ч 48 мин. Золотая медаль имени К. Э. Циолковского АН СССР, золотая авиационная медаль Международной авиационной федерации, медаль А. де Лаво. Депутат Верховного Совета СССР в 1962—1968. Награждён орденом Ленина, а также, высшими наградами ряда зарубежных государств. Погиб во время тренировочного полёта на самолёте. Его именем назван город Смоленской области. Имя Г. носят Военно-воздушная академия, Центр подготовки космонавтов, авиационный завод в Комсомольске-на-Амуре, учебные заведения, улицы и площади многие городов мира. В честь Г. Международной авиационной федерацией учреждена медаль (см. Награды ФАИ). В Москве, Гагарине (бывший Гжатск), Звёздном городке, в Софии и других городах — памятники. Именем Г. назван кратер на обратной стороне Луны. Урна с прахом в Кремлевской стене.

Лит.: Борзенко С. А., Денисов Н. Н., Первый космонавт, М. 1969; Титов Г. С., Первый космонавт планеты, М., 1971; Гагарин В. А., Мой брат Юрий, 2 изд., М., 1979.

Ю. А. Гагарин.

газовая динамика — раздел аэродинамики, в котором изучаются закономерности движения газов, а также механическое и тепловое взаимодействие между газом и движущимися в нём телами. Зарождение и развитие Г. д. происходило под непосредственным воздействием запросов практики в связи созданием самолётов, движущихся с большими дозвуковыми и сверхзвуковыми скоростями, воздушно-реактивных двигателей и ракетной техники. Специфика используемых методов экспериментальных исследований и математических уравнений Г. д. и методов их решения, а также широкий круг прикладных задач привели к выделению Г. д. в самостоятельную область механики и прикладной математики. При этом в Г. д. выделяются 2 класса задач: так называемые задачи внешней аэродинамики, когда движение газа происходит в неограниченном пространстве, и так называемые задачи внутренней аэродинамики, когда движение газа происходит в ограниченном пространстве. Движение газа описывается системой дифференциальных уравнений в частных производных, выражающих собой сохранения законы (массы, импульса и энергии); замыкается система уравнением состояния, которое связывает между собой плотность {{ρ}}, давление p и температуру T, и зависимостями теплофизических, свойств среды от температуры и давления. Во многих задачах Г. д. газ находится вдали от точки конденсации (очень низкие температуры) и от областей диссоциации и ионизации (очень высокие температуры). В этих задачах обычно используется модель совершенного газа, который подчиняется уравнению состояния Клапейрона p = {{ρ}}RT, где R — газовая постоянная, и имеет постоянные удельные теплоёмкости. Система уравнений Г. д. в общем виде очень сложна даже для численного анализа, поэтому важное значение в Г. д. имеет эксперимент, для чего создаются аэродинамические трубы и специальные стенды. Условия динамического и теплового подобия при испытаниях моделей, геометрически подобных натурным объектам, обеспечиваются соблюдением равенства значений в условиях эксплуатации объекта и при моделировании соответствующих подобия критериев: Рейнольдса числа Re, Маха числа M и т. п.

Л. Прандтль ещё в 1904 показал, что в типичных гидро- и газодинамических задачах, для которых число Рейнольдса велико (Re > > l), области влияния вязкости и теплопроводности ограничены тонкими пограничными слоями, толщиной примерно на два порядка меньшей характерных размеров обтекаемого тела, а вне этих слоев протекает основная масса газа, где влиянием вязкости и теплопроводности можно пренебречь. Иными словами, задача об обтекании тела потоком вязкой среды разбивается на две самостоятельные задачи: расчёт поля течения идеального газа (рассматриваемого как сжимаемая жидкость) на основе Эйлера уравнений и расчёт течения вязкого газа в пограничном слое на основе уравнений Прандтля.

Для установившегося потока идеального сжимаемого баротропного газа в отсутствие массовых сил дифференциальные уравнения Эйлера приводят к Бернулли уравнению

{{формула}}

которое выполняется вдоль линии тока. Здесь V — модуль вектора скорости, Vm — максимальная скорость в газе. Если течение является потенциальным, то есть, V = grad{{φ}}, где {{φ}} — потенциал скорости, то постоянная Бернулли принимает одно и то же значение для всего поля течения. Кроме того, из уравнения энергии следует интеграл вдоль линии тока

h + V2/2 = H,

где h — энтальпия, H — энтальпия торможения (см. Торможения параметры). Для безвихревого течения решение конкретной задачи Г. д. при заданных граничных условиях сводится к отысканию {{φ}}, поведение которого в случае плоского установившегося движения описывается уравнением

{{формула}}

где а = dp/d{{ρ}} — скорость звука, u, v — компоненты вектора скорости, параллельные осям декартовой системы координат x, y. Получить решение этого уравнения в общем виде практически невозможно, однако в некоторых случаях оно сводится к уравнениям, методы решения которых достаточно хорошо разработаны. Так, при малых дозвуковых скоростях (u < < a, v < < a) это уравнение переходит в уравнение Лапласа ({{Δφ}} = 0), описывающее течение несжимаемой жидкости. При дозвуковых скоростях (u < a, v < a) выражения в скобках имеют положительные знак и уравнение эллиптического типа. При сверхзвуковых скоростях (u > a или v > a) выражения в скобках отрицательны и уравнение гиперболического типа. Особенно сложными для математического исследования являются смешанные течения, в которых имеются дозвуковые и сверхзвуковые области (см. Трансзвуковое течение).

Сложность решения приведённого выше уравнения для потенциала скорости заключается в его нелинейности. Однако в 1904 С. А. Чаплыгин предложил метод решения в плоскости годографа (см. Годографа метод). При этом уравнение становится линейным, и для его решения можно воспользоваться хорошо развитой теорией аналитических функций. Чаплыгин получил приближенное аналитическое решение задачи о струйном дозвуковом обтекании тела, которое лишь во второй половине 30-х гг, было модифицировано применительно к безотрывному обтеканию авиационного крылового профиля С. А. Христиановичем и Л. И. Седовым.

Характерной особенностью сверхзвуковых течений является существование стационарных волн давления. Если соседствуют две области с разным давлением (p2 > p1), то в область повышенного давления распространяются волны разрежения, а в область пониженного — волны сжатия. В адиабатической среде волны разрежения со временем растягиваются, оставаясь плавными, а крутизна волн сжатия быстро нарастает, так что их стационарной формой является ударная волна (скачок уплотнения). Скорость распространения ударных волн тем выше, чем больше перепад давлений. В прямом скачке уплотнения направление потока не изменяется; в плоском косом скачке поток отклоняется. Если угол отклонения потока превышает некоторый предельный {{θ}}max(M), то плоский косой скачок невозможен (фронт волны становится криволинейным). Изменение газодинамических переменных в ударной волне описывается Гюгоньо адиабатой. Теория ударных волн — важный раздел Г. д.

Типичным примером течения с образованием волн разрежения может служить обтекание выпуклого угла сверхзвуковым потоком газа — Прандтля — Майера течение. Это течение описывается простыми аналитическими формулами, которые широко применяются на практике для расчёта сверхзвукового обтекания крыла, криволинейной стенки, косого среза сопла Лаваля и т. п.

Теория ударных волн используется при проектировании воздухозаборников. Так, например, в плоском воздухозаборнике с центральным телом, имеющем так называемую полигональную поверхность, сверхзвуковой поток тормозится в системе последовательно расположенных косых скачков уплотнения, замыкаемой несильным прямым скачком; суммарное значение коэффициента восстановления полного давления v = v1*v2*…vn достигает максимума (минимум потерь) при условии, что все косые скачки уплотнения имеют равную интенсивность (v1 = v2 = …vn-1), а интенсивность замыкающего прямого скачка почти не отличается от интенсивности косого (vn {{}} v1). Увеличение числа n косых скачков приводит к возрастанию v. Устремляя число косых скачков к бесконечности, то есть, заменяя полигональную поверхность центрального тела криволинейной, можно увеличить v; при этом на части криволинейного участка торможение потока будет изоэнтропическим, а потери полного давления будут определяться интенсивностью замыкающего скачка уплотнения.

При расчёте сложных сверхзвуковых течений используется тот факт, что характеристиками гиперболических уравнений движения являются волны Маха (см. Маха конус). Используя сетку волн Маха в сочетании с ударными волнами, удалось создать графические и числовые методы расчёта сложных сверхзвуковых течений (в соплах, струях, при обтекании тел). Разработаны аналитические методы, основанные на линеаризации потенциала скорости или возмущений скорости (для тонких тел на малых углах атаки).

Если поле течения невязкого газа найдено, то появляется возможность проинтегрировать уравнения пограничного слоя и рассчитать распределения напряжений трения и теплового потока на обтекаемой поверхности тела, что, в свою очередь, позволяет определить сопротивление трения и температурный режим поверхности тела. Как известно, при больших положительных градиентах давления происходит отрыв пограничного слоя. Например, если поток проходит сквозь ударную волну, падающую на тело, то может возникнуть отрыв пограничного слоя, приводящий к возникновению дополнительных ударных волн, то есть имеет место “сильное” взаимодействие пограничного слоя и внешнего невязкого потока, что является предметом специального изучения в прикладной Г. д.

Для анализа многие стационарных задач внутренней аэродинамики успешно используются одномерные уравнения сохранения массы, импульса и энергии, записанные в интегральной форме для элементарной трубки тока, в каждом поперечном сечении которой газодинамические переменные потока принимаются постоянными. Если рассмотреть некоторый участок элементарной струйки между двумя нормальными к поверхности тока сечениями 1 и 2, то эти уравнения примут вид: G = {{ρ}}VF = const,

P{{α}} = G(V{{α}}2-V{{α}}1), {{α}} = х, у, z,

{{формула}}

где F — площадь поперечного сечения трубки тока, x, y, z — декартовы оси координат, P — равнодействующая всех сил, приложенных к замкнутому контуру, G — массовый расход, L — механическая. работа (насоса, компрессора, турбины и т. д.), Lтр — работа сил трения на рассматриваемом участке. Входящий в уравнение энергии интеграл представляет собой работу, затраченную на проталкивание газа, а его значение зависит от характера термодинамического процесса при движении газа. Приведённое уравнение энергии записано в механической форме и часто называется обобщённым уравнением Бернулли; его можно также записать в “тепловой” форме:

Q-L = H2-H1,

где Q — подведенное к единице массы газа количество теплоты. При анализе работы газовых машин (турбин и т. п.) наряду с указанными уравнениями используется также уравнение сохранения момента количества движения относительно оси вращения:

N = G(Vu2r2-Vu1r1),

где N — сумма моментов всех сил, приложенных к замкнутому контуру, Vu — окружная составляющая вектора скорости, r — расстояние от оси вращения. Эта система уравнений позволяет понять особенности течения газа и провести газодинамический расчёт газопроводов, эжекторов, элементов реактивного двигателя, лопаточных машин и других устройств. Следует отметить, что аналогичный подход к решению прикладных задач лежит в основе обычной гидравлики, поэтому Г. д. элементарной струйки иногда называют “газовой гидравликой”.

Одна из важнейших проблем прикладной внутренней аэродинамики — получение сверхзвукового потока в технических устройствах различного рода: аэродинамических трубах, соплах реактивных двигателей и т. п. Для анализа особенностей течения газа, в частности изменения скорости потока при наличии воздействий разного рода, удобно использовать следующие дифференциальное соотношение:

{{формула}}

Здесь M — местное число Маха, {{γ}} — показатель адиабаты. “Замораживая” все воздействия, кроме анализируемого, можно установить его влияние на скорость течения; при этом каждое воздействие меняет знак на обратный при переходе скорости потока через значение M = 1. В качестве примера рассмотрим влияние сил трения на развитие адиабатического течения в трубе постоянного сечения с непроницаемыми стенками (G = const, F = const, Lтр{{}}const, L = Q = 0). Поскольку работа сил трения всегда положительна (dLтр > 0), то под действием сил трения дозвуковой поток ускоряется (dV > 0), а сверхзвуковой замедляется (dV < 0); непрерывный переход через скорость звука невозможен. Если в начальном сечении трубы диаметром D скорость потока дозвуковая (M1 < l), то в зависимости от приведённой длины трубы {{l}} = l/D (l — длина трубы) возможны три случая: а) при {{l}} < {{l}}кр ({{l}}кр — длина, на которой скорость потока становится равной скорости звука) в выходном сечении трубы поток дозвуковой (M2 < 1); б) при {{l}} = {{l}}кр, в выходном сечении достигается критическая скорость (M2 = 1) и реализуется течение с максимальным расходом; в) при {{l}} > {{l}}кр течение газа с заданным начальным значением M1 реализоваться не может. Для сверхзвукового потока (M1 > 1) возможны следующие режимы: а) при {{l}} < {{l}}кр в выходном сечении трубы имеет место сверхзвуковая скорость (M2 > l); б) при {{l}} = {{l}}кр в выходном сечении скорость потока равна критической (M2 = 1); в) при {{l}} > {{l}}кр плавное торможение сверхзвукового потока на всём протяжении трубы невозможно и в некотором сечении возникает прямой скачок уплотнения, за которым устанавливается ускоренное дозвуковое течение; местоположение скачка уплотнения определяется из условия, что в выходном сечении скорость потока равна критической. Аналогичная картина имеет место при однозначном воздействии других величин, например, влияние неадиабатичности течения (dQ {{¹}} 0, dF = dG = dL = dLтр = 0). Дозвуковой поток в трубе за счет подвода теплоты можно разогнать до критической скорости, но нельзя перевести в область сверхзвукового течения. При этом подвод теплоты приводит к уменьшению полного давления в выходном сечении трубы, то есть к появлению так называемого теплового сопротивления (при М < = 1 p02/p01 > = 0,79 для газа с показателем адиабаты {{g}} = 1,4; при M{{→∞}} p02/p01{{}}0; индекс “0” относится к параметрам заторможенного газа).

Таким образом при однозначном воздействии на поток газа в трубе нельзя непрерывным образом перевести его из дозвукового в сверхзвуковой, но этого можно достичь изменением знака воздействия при достижений критической скорости. Принципиально возможны четыре схемы сверхзвукового сопла. Геометрическо есопло: Лаваля сопло, в дозвуковой части которого ускорение потока осуществляется путём сужения канала (dF < 0); за критическим сечением (M = 1) площадь канала увеличивается (dF > 0) с целью получения сверхзвукового потока и его дальнейшего ускорения. Этот принцип построения сверхзвукового сопла наиболее часто используется в практических приложениях. Расходное сопло: dG{{¹}}0, dF = dL = dLтр = dQ = 0; ускорение потока (dV > 0) происходит здесь за счёт подвода дополнительной массы газа в дозвуковой части канала и отсоса газа в сверхзвуковые его части. В критическом сечении расход газа и плотность тока имеют максимум. Механическое сопло: dL {{¹}} 0, dF = dG = dLтр = dQ = 0; оно должно состоять из последовательно включённых турбины, где дозвуковой поток газа ускоряется до критической скорости, и компрессора, в котором происходит ускорение сверхзвукового потока. В механическом сопле в его критическом сечении параметры торможения имеют минимум. Тепловое сопло: (пока ещё не осуществлено): dQ {{¹}} 0, dF = dG = dLтр = dL = 0; в дозвуковой части сопла разгон потока вызывается подводом теплоты (dQ > 0), а в сверхзвуковой части сопла — её отводом (dQ < 0). Помимо четырёх описанных схем сверхзвуков сопла принципиально возможны комбинированные схемы, например, полутепловое сопло, в котором дозвуковой участок является тепловым, а сверхзвуковой — геометрическим. Особенности течения газа в соплах различных типов и их характеристики могут быть проанализированы с помощью приведённых выше уравнений.

На основе одномерных уравнений Г. д. проводится также газодинамический расчёт отдельных элементов воздушно-реактивного двигателя. Так, например, для адиабатического (Q = 0) течения идеального совершенного газа (Lтр = 0) из уравнения энергии следует формула для расчёта работы, совершаемой 1 кг газа в лопаточных машинах:

{{формула}}

где индексы “1” и “2” относятся к сечениям перед и за машиной соответственно. При равных перепадах давления работа пропорциональна температуре торможения T01 перед машиной. Если холодный газ сжать в компрессоре, а перед его расширением в турбине осуществить подвод теплоты путём сжигания топлива, то турбина разовьёт большую работу, чем затратил компрессор, и избыток работы можно передать на воздушный винт, тянущий самолёт (ТВД), или электрогенератор. Если турбина вращает только компрессор, то оставшийся за турбиной избыток давления можно использовать для получения скорости истечения струи газа, превышающей скорость полета, что, согласно уравнению импульсов, создаёт реактивную силу (ТРД).

В большинстве задач внутренней аэродинамики течение газа носит достаточно сложный пространственный характер (наличие отрыва потока, взаимодействие пограничного слоя со скачками уплотнения и т. п.), и, естественно, уравнения одномерной Г. д. не могут дать полного ответа на вопрос о структуре и локальных особенностях течения газа в различных технических устройствах и их отдельных элементах. Более детальный анализ картины течения может быть проведён путём численного интегрирования дифференциальных уравнений Г. д., а также путём экспериментальных исследований.

Лит.: Черный Г. Г., Течения газа с большой сверхзвуковой скоростью, М., 1959; Кочин Н. Е., Кибель И. А., Розе И. В., Теоретическая гидромеханика, 4 изд., ч. 1—2, Л. — М., 1948—1963; Седов Л. И., Плоские задачи гидродинамики и аэродинамики. 3 изд., М., 1980; Абрамович Г. Н., Прикладная газовая динамика, 5 изд., ч. 1—2, М., 1991.

Г. Н. Абрамович.

газогенератор — 1) часть газотурбинного двигателя, состоящая из последовательно расположенных осевого или центробежного компрессора, камеры сгорания и газовой турбины, приводящей компрессор (рис. 1). Термин “Г.” появился в связи с внедрением в авиастроение турбореактивных двухконтурных двигателей. Эти двигатели имеют двух- или трёхзальную схему. В первом случае Г. называется каскад высокого давления, во втором — каскад высокого и среднего давления. Рабочий процесс в Г. осуществляется при наибольших значениях давления, термических и механических нагрузок. Большая часть прочностных и газодинамических проблем, возникающих при создании газотурбинного двигателя, связана с Г., поэтому опережающая экспериментальная отработка Г. может сократить сроки создания и доводки газотурбинного двигателя. Однотипность конструктивной схемы Г. для газотурбинных двигателей различных принципиальных схем (турбореактивных двигателей, турбореактивных двухконтурных двигателей, турбовинтовых двигателей) позволяет создавать семейства двигателей различных типов и назначения на основе базовой конструкции Г. (рис. 2), причём максимальные и минимальные значения тяги (мощности) двигателей одного семейства могут отличаться в несколько раз. Такой метод создания двигателей находит широкое практическое применение. Наряду с термогазодинамическими параметрами рабочего процесса важным конструктивным показателем Г., характеризующим размеры проточной части и определяющим тягу (мощность) базируемых на его основе газотурбинного двигателя, является размерность Г., представляющая собой приведённый расход воздуха в выходном сечении компрессора: {{формула}}. где G0 — максимальный приведенный расход во входном сечении компрессора, {{p}}к — максимальное значение степени повышения давления в компрессоре. Наименьшее значение {{G0вых}} имеют Г. вертолётных газотурбинных двигателей и турбовинтовых двигателей лёгких самолётов: {{G0вых}} = 0,2—2,5 кг/с. У Г. современных турбореактивных двухконтурных двигателей для до- и сверхзвуковых самолётов {{G0вых}} = 2—9 кг/с. В Г. одноконтурных турбореактивных двигателей {{G0вых}} достигает 35 кг/с. Необходимая тяга (мощность) газотурбинных двигателей получается сочетанием базового Г. с турбовентилятором (турбокомпрессором), имеющим соответствующие значения расхода воздуха и степени повышения давления в вентиляторе (компрессоре низкого давления), или со свободной турбиной (для турбовального газотурбинного двигателя). Конструкция базового Г. должна быть рассчитана на различные значения давления и температуры рабочего тела в различных газотурбинных двигателях.

2) Часть турбонасосного агрегата (турбонасосный агрегат) жидкостного ракетного двигателя — устройство, в камере которого в результате реакций окисления (двухкомпонентное топливо) или разложения (однокомпонентное топливо) вырабатывается горячий газ (температура 200—900{{°}}С), являющийся рабочим телом для привода турбины турбонасосного агрегата, насосы которого обеспечивают подачу топлива в камеру сгорания жидкостного ракетного двигателя. Для наддува топливных баков, работы системы управления.

М. М. Цховребов.

Рис. 1. Схема газогенератора: 1 — компрессор; 2 — камера сгорания; 3 — турбина.

Рис. 2. Семейство двигателей на основе базового газогенератора; 1 — базовый газогенератор; 2 — ТРДФ, относительная тяга на взлётном режиме {{P}} = 1; 3 — ТРДДФ, {{P}} = 3; 4 — ТРДДФ (форсажная камера в наружном контуре), {{P}} = 5; 5 — ТРДД, {{P}} = 3; 6 — ТВД, {{P}} = 4 (заштрихованы каскады низкого давления двигателя; голубые области соответствуют базовому газогенератору).

газодинамическое управление летательным аппаратом — создание управляющих сил и моментов для изменения (или сохранения) пространственного, положения летательного аппарата с помощью реактивных струй. Методы и средства Г. у. разнообразны. В ракетной и космической технике широко применяются реактивные системы ориентации и стабилизации летательного аппарата с разнесёнными относительно его центра масс неподвижными реактивными двигателями, а также поворотные двигатели и другие способы отклонения реактивной струи (например, с помощью газовых рулей — поворотных пластин из огнеупорного материала, установленных на выходе из сопла) для управления траекторией движения летательного аппарата. В авиации управление вектором тяги основного двигателя является одним из способов осуществления вертикального взлёта и посадки самолёта, но оно может также использоваться и для управления полётом манёвренных самолётов (самолётов вертикального взлёта и посадки и обычных) наряду с аэродинамическими органами управления.

На самолёт вертикального взлёта и посадки система Г. у. обеспечивает стабилизацию и управление летательным аппаратом на вертикальных режимах и на малых скоростях полёта, когда аэродинамические силы отсутствуют или малы. В этих целях могут, например, использоваться струйные рули — сопла, установленные на концах крыла и фюзеляжа, из которых истекает сжатый воздух, отбираемый от компрессора двигателя (см. рис.). В горизонтальном полёте с большой скоростью управление и стабилизация самолёт вертикального взлёта и посадки осуществляются аэродинамическими поверхностями. Другим примером летательного аппарата, оснащённого органами аэродинамического и Г. у., являются воздушно-космические аппараты типа крылатого орбитального корабля многоразового использования “Буран” (на нём Г. у. включается на орбите и при спуске в верхних слоях атмосферы). Предполагается применение Г. у. и на винтокрылых летательных аппаратах. В 80-х гг. на экспериментальных образцах испытана струйная система путевого управления вертолётом, заменяющая рулевой винт.

Система газодинамического управления самолета с вертикальным взлетом и посадкой Бритиш аэроспейс “Харриер” : 1 — подъёмно-маршевый двигатель; 2 — трубопроводы подвода сжатого воздуха; 3, 6 — сопла управления креном самолета; 4 — сопло управления рысканием; 5, 7 — сопла управления тангажом.

газообразное топливо — различные газообразные вещества, окисление которых сопровождается значительным выделением теплоты. Г. т. обладает рядом преимуществ перед жидкими и твёрдыми топливами. При сжигании газов не образуется золы. Основной недостаток Г. т. — малая плотность. К Г. т. относятся водород, лёгкие углеводороды (метан, пропан, бутан и др.), природный и попутный нефтяной газы и другие смеси в основном углеводородных газов. Г. т. значительно различаются по свойствам и теплотехническим характеристикам. Сжиженные водород, индивидуальные углеводороды (метан, пропан), природный и попутный нефтяной газы рассматриваются как возможные топлива для авиационных силовых установок.

газотурбинный двигатель (ГТД) — тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая турбина. Рабочее тело (воздух) сжимается в компрессоре и после подвода теплоты расширяется в газовой турбине, отдавая ей часть энергии, необходимую для привода компрессора. Основная часть энергии нагретых газов используется для получения с помощью той же или дополнительной турбины полезной механической работы на валу двигателя, например, для вращения воздушного или несущего винта (турбовинтовой двигатель, турбовальный двигатель), или для увеличения кинетической энергии газов, создающих реактивную тягу (турбореактивный двигатель). Если нужно получить еще большую тягу, применяют вторичный подогрев этих газов в форсажных камерах сгорания для увеличения скорости истечения газов.

Авиационные ГТД имеют высокие технические показатели. Степень повышения давления в компрессорах достигает 30, а температура газов перед турбиной 1650{{ }}К и выше. Эффективный коэффициент полезного действия у лучших двигателей составляет в дозвуковом полёте 40—43 %, а при больших сверхзвуковых скоростях (Маха числа полёта М = 2,5—3) превышает 50%. Стартовая мощность турбовинтовых и турбовальных ГТД 100—10000 кВт, а стартовая тяга реактивных газотурбинных двигателей от несколько кН до 300 кН. Авиационные ГТД развивают на 1 кг массы в стартовых условиях 5—7 кВт мощности и 50— 80 H реактивной тяги (последнее значение — при использовании форсажных камер).

Начало применения газотурбинных двигателей в авиации относится к 1944. В 50—60-х гг. ГТД стал основным типом авиационного двигателя. ГТД применяются также на других видах транспортных аппаратов (автомобили, корабли и др.) и в различных установках (передвижные электростанции, агрегаты газоперекачки и др.). Часто для этих целей используются специальные модификации авиационных ГТД с пониженными параметрами.

Лит.: Теория воздушно-реактивных двигателей, под ред. С. М. Шляхтенко, М., 1975.

В. А. Сосунов.

гайдроп (английское guide rope, буквально — направляющий канат) — толстый длинный канат, используемый при посадке дирижаблей (не имеющих движителей с изменяемым вектором тяги), спортивных аэростатов (наполненных водородом или светильным газом), стратостатов и субстратостатов некоторых видов. На дирижаблях, взлетавших без затяжеления (то есть только вследствие аэростатической подъёмной силы), Г. сбрасывался при посадке на минимальной скорости полёта с высоты 50—100 и для приёма его стартовой командой. Посадка дирижабля с использованием Г. требовала большого числа людей и занимала много времени. После подтягивания дирижабля за Г. стартовая команда за поручни принимала гондолу на руки. Затем дирижабль, удерживаемый за поясные стропы и гондолу, загружался балластом и устанавливался на причальной мачте или заводился в эллинг.

При полётах спортивных аэростатов, субстратостатов и стратостатов с оболочками из прорезиненных материалов Г. служит для смягчения посадки (уменьшает скорость снижения) и автоматического регулирования высоты при низком полёте, когда часть спущенного Г. волочится по земле (при этом уменьшается также скорость дрейфа, см. рис.).

В нижний конец Г. заделывается стальной трос длиной 10 м, диаметр которого (в зависимости от прочности Г.) составляет от 6 до 10 мм. При посадке спортивных тепловых аэростатов, дрейфующих аэростатов и стратостатов с плёночными оболочками Г. не применяется.

Ход аэростата на гайдропе.

гак — см. Тормозной крюк.

Гаккель Яков Модестович (1874—1945) — русский советский учёный и конструктор в области самолетостроения и тепловозостроения, заслуженный деятель науки и техники РСФСР (1940). Окончил Петербургский электротехнический институт (1897). За участие в студенческих революционных организациях был сослан на 5 лет в Сибирь, где руководил постройкой и эксплуатацией одной из первых в России гидроэлектростанций (близ г. Бодайбо, на Ленских приисках). Вернувшись из ссылки, преподавал в Электротехническом институте (с 1921 профессор). С 1936 в Ленинградском институте инженеров железнодорожного транспорта. В 1909—1912 спроектировал и построил ряд оригинальных самолётов, в том числе биплан “Гаккель-III” (рис. в таблице IV), одностоечный биплан “Гаккель-IV” с двигателем мощностью 73,6 кВт, первый в России гидросамолёт-амфибию “Гаккель-V”, биплан “Гаккель-VII”, на втором экземпляре которого Г. В. Алехнович установил национальный рекорд высоты полёта (1350 м) и который получил большую золотую медаль на Международной воздухоплавательной выставке в Москве (1912), подкосный моноплан “Гаккель-IХ” (рис. в таблице V) и др. По проекту Г. в СССР был построен один из первых в мире мощных (735 кВт) работоспособных тепловозов. Награждён орденом Трудового Красного Знамени, медалями.

Лит.: Самолеты Я. М. Гаккеля, “Вестник воздушного флота”, 1952, №4, с. 94—95; Бычков В. И., Самолеты Я. М. Гаккеля, в кн. Авиация в России, 2 изд., М., 1988, с. 244—250.

Я. М. Гаккель.

“Гаккель-III” (Г-III) — самолёт, построенный в 1910 Я. М. Гаккелем. Биплан (рис. в таблице IV) деревянной конструкции с фюзеляжем и хвостовым оперением. Длина самолёта 7,5 м, размах крыльев 7,5 м, их суммарная площадь 29 м2. Обтяжка крыльев и фюзеляжа из прорезиненной ткани и полотна. Для управления самолётом по крену использовалось перекашивание (гоширование) крыльев. Двигатель “Аизани” мощностью 25,7 кВт. Полётная масса 560 кг. Полёт на Г-III, выполненный В. Ф. Булгаковым 6 (19) июня 1910 на Гатчинском аэродроме под Петербургом, стал одним из первых в России полётов самолёта отечественной постройки.

Галеркина — Бубнова метод — см. в статье Флаттер.

Галлай Марк Лазаревич (р. 1914) — советский лётчик-испытатель, полковник, Герой Советского Союза (1957), заслуженный лётчик-испытатель СССР (1959), доктор технических наук (1972), писатель. Окончил Ленинградский политехнический институт (1937), школу лётчиков и курсы лётчиков-инструкторов Ленинградского аэроклуба (1936).

Участник Великой Отечественной войны. Совершил около 80 боевых вылетов. Работал в Центральном аэрогидродинамическом институте, ЛИИ и других организациях. Проводил испытания на флаттер, устойчивость и управляемость, радиолокационного оборудования, взлётно-посадочных устройств. Ведущий лётчик-испытатель самолётов МиГ-9, Ту-4, 3М, вертолётов Ми-1 и Як-100. Инструктор-методист первой группы советских лётчиков-космонавтов (1960—1961), Награждён 3 орденами Ленина, 4 орденами Красного Знамени, 2 орденами Отечественной войны 1-й степени, орденами Красной Звезды, “Знак Почёта”, медалями.

Соч.: Через невидимые барьеры, М., 1960; Испытано в небе. М., 1963.

М. Л. Галлай.

“Галф Эр” (Gulf Air) — авиакомпания княжества Бахрейн. Осуществляет перевозки в страны Западной Европы, Азии, Африки, а также в США. Основана в 1950. В 1989 перевезла 3 миллиона пассажиров, пассожирооборот 6,02 миллиардов пассажиро-км. Авиационный парк — 24 самолёта.

“Галфстрим аэроспейс” — см. “Гольфстрим аэроспейс”.

гаргрот — объёмный продольный обтекатель на фюзеляже самолёта, закрывающий проводку управления, трубопроводы и электропровода, выступающие за основные габариты фюзеляжа, и обеспечивающий удобство подхода к ним в эксплуатации.

Гареев Муса Гайсинович (1922—1987) — советский лётчик, полковник, дважды Герой Советского Союза (дважды 1945). В Советской Армии с 1940. Окончил военную авиационную школу (1942), Военную академию имени М. В. Фрунзе (1951), Военную академию Генштаба Вооруженных Сил СССР (1959). Участник Великой Отечественной войны. В ходе войны был лётчиком-штурмовиком, командиром звена, командиром эскадрильи штурмового авиаполка. Совершил около 250 боевых вылетов. После войны в Военно-воздушных силах. Депутат Верховного Совета СССР в 1946—1954. Награждён орденом Ленина, 3 орденами Красного Знамени, орденами Александра Невского, Богдана Хмельницкого 3-й степени, 2 орденами Отечественной войны 1-й степени, орденом Трудового Красного Знамени, 3 орденами Красной Звезды, медалями. Бронзовый бюст в поселке Ташчишма Илишевского района Башкирии.

М. Г. Гареев.

Гарнаев Юрий Александрович (1917—1967) — советский лётчик-испытатель, заслуженный лётчик-испытатель СССР (1966), Герой Советского Союза (1964), Окончил Энгельсскую военную авиационную школу лётчиков (1939). Участник Великой Отечественной войны. С 1951 на испытательной работе. Испытывал высотные скафандры, средства спасения лётчиков реактивных самолётов, системы дозаправки самолётов в воздухе. Проводил исследовательские полёты на вертолётах конструкции Н. И. Камова, М. Л. Миля, А. С. Яковлева. Испытал летательный аппарат вертикального взлёта и посадки типа “Турболёт” (1957), Провёл эксперимент по отстрелу лопастей на вертолёте Ми-4 (1958). Участвовал в подготовке космонавтов к полетам в условиях невесомости в специально оборудованных самолётах-лабораториях. Награждён орденами Ленина, Трудового Красного Знамена, медалями. Погиб при оказании помощи в тушении с вертолёта Ми-6 лесных пожаров во Франции. Памятник в г. Ле-Ров близ Марселя (Франция).

Лит.: Проверено на себе. Документы, дневники, воспоминания о Юрии Гарнаеве, 3 изд., М., 1986.

Ю. А. Гарнаев.

“Гарретт Тербин Энджин” (Garrett Turbine Engine Co) — двигателестроительная фирма США. Является отделением концерна “Гарретт”, основанного в 1936. Современное название с 1981. Крупнейший в зарубежных странах производитель авиационных газотурбинных двигателей малой и средней мощности, разработку и производство которых ведёт с 1946. К началу 80-х гг. выпустила до 70% всех газотурбинных двигателей мощностью от 46 до 1865 кВт, произведенных в США и Западной Европе. Газотурбинные двигатели фирмы используются главным образом в авиации общего назначения и на лёгких транспортных самолётах. К основной продукции конца 80-х гг. относятся турбовинтовой двигатель TPE331 (T76), турбореактивные двухконтурные двигатели ATF3 (F104), TFE76 (F109), TFE731. Основные данные некоторых двигателей фирмы приведены в таблице.

“Гаруда Индонезия” (Garuda Indonesia) — национальная авиакомпания Индонезии. Осуществляет перевозки в страны Западной Европы, Африки, Азии, а также в США, Австралию и Новую Зеландию. Основана в 1950. В 1989 перевезла 7,6 миллионов пассажиров, пассажирооборот 14,73 миллиардов пассажиро-км. Авиационный парк — 75 самолётов.

Гарф Борис Арнольдович (1907—1982) — советский конструктор и воздухоплаватель, кандидат технических наук (1949). Окончил Московский авиационный институт (1930). Разрабатывал мягкие, полужёсткие и полумягкие дирижабли (В-2, В-3, В-5, В-7, “Победа”, “Патриот”, “Малыш”). Был необоснованно репрессирован и в 1937—1939 находился в заключении. В 1940—1942 участвовал в создании ряда планеров и самолётов. В 1942—1947 служил в воздухоплавательной части Воздушно-десантных войск, где руководил постройкой и испытаниями дирижаблей. Разработал гондолу для привязных аэростатов, используемых для подготовки парашютистов, а также герметичную гондолу для стратостата.

Соч.: Проектирование металлических конструкций дирижаблей, М. — Л., 1936 (совместно с В. И. Никольским).

Б. А. Гарф.

гаситель колебаний — то же, что демпфер.

гаситель подъемной силы — см. в статье Интерцептор.

Гастелло Николай Францевич (1908—1941) — советский лётчик, капитан, Герой Советского Союза (1941, посмертно). Окончил Луганскую Военную авиационную школу лётчиков (1933). Участник боёв в районе р. Халхин-Гол, советско-финляндской и Великой Отечественной войн. 26 июня 1941 во время боевого вылета снаряд попал в бензобак его самолёта, возник пожар, экипаж бомбардировщика мог воспользоваться парашютами, но Г. направил горящий самолет на скопление немецко-фашистских танков и бензоцистерн, которые взорвались вместе с самолетом. Таран наземной цели, совершённый Г. и членами его экипажа лейтенантами А. А. Бурденюком, Г. Н. Скоробогатым и старшим сержантом А. А. Калининым, стал символом бесстрашия и преданности Родине. Награждён орденом Ленина, медалью. Имя Г. носят улицы во многие городах, посёлки в Магаданской и Сахалинской областях. На месте подвига, близ Радошковичей (Беларусь), героическому экипажу установлен памятник.

Н. Ф. Гастелло.

гатчинская военная авиационная школа. 12 (25) октября 1910 на аэродроме Петербургской офицерской воздухоплавательной школы (ОВШ) в Гатчине начато обучение полетам на аэроплане офицеров-воздухоплавателей (инструктор Г. Г. Горшков). В 1911 при ОВШ был учрежден авиационный отдел для подготовки военных летчиков, который в июле 1914 реорганизован в Г. в. а. ш. Эту школу (или авиационный отдел окончили М. С. Бабушкин, Е. Н. Крутень, Б. Н. Кудрин, Я. И. Нагурский, П. Н. Нестеров, А. В. Панкратьев, М. Т. Слепнёв, А. В. Шиуков и другие известные летчики. 18 апреля 1918 школа реорганизована в 1-ю советскую авиационную школу.

В период Гражданской войны и военной интервенции 1918—1920 она была одной из основных баз подготовки лётных кадров советской авиации.

Гвадалахарская конвенция 1961 — см. в статье Варшавская конвенция 1929.

гелиевая труба — аэродинамическая труба, рабочим газом в которой служит гелий. Получение больших Маха чисел М в аэродинамической трубе при использовании воздуха связано с необходимостью его подогрева для предотвращения конденсации в сопле и рабочей части. Так, при М = 15 температура торможения воздуха должна быть не ниже 2000{{ }}К. Высокая температура потока и наличие подогревателя усложняют конструкцию трубы и технику эксперимента. Гелий имеет самую низкую температуру конденсации среди всех известных веществ (T = 1 К при давлении p {{}} 100 Па) и, будучи инертным газом, безопасен в эксплуатации. При температуре торможения в форкамере T0 = 293 К и полном давлении в ней p0 = 10 МПа в трубе реализуются числа М {{}} 30, тогда как в воздухе при тех же условиях максимальное число М = 3,8. По термодинамическим свойствам гелий заметно отличается от воздуха (показатель адиабаты {{γ}} у гелия равен 5/3, у воздуха при умеренных температурах 1,4), поэтому результаты газодинамических экспериментов в Г. т. не могут быть непосредственно перенесены на воздух. Однако Г. т. позволяют получать ценную информацию о физической картине обтекания тел гиперзвуковым потоком газа, служат для апробации различных расчётных методов, а в ряде случаев и для отработки элементов летательного аппарата.

Широкое внедрение в эксперимент и совершенствование Г. т. началось с середины 50-х гг. В Г. т. конца 80-х гг. реализуются потоки с М = 8—50. Типичная схема Г. т. аналогична схеме аэродинамической трубы кратковременного действия. Трубы с большим размером рабочей части обычно оборудуются системами регенерации гелия.

Лит.: Техника гиперзвуковых исследований, пер. с англ., М., 1964.

В. Я. Безменов.

геликоптер (от греческого h{{é}}lix — спираль, винт и pter{{ó}}n — крыло) — принятое за рубежом название вертолёта.

Гельмгольц (Helmholtz) Герман Людвиг Фердинанд (1821—1994) — немецкий физик, математик, физиолог, психолог, иностранный член-корреспондент Петербургской АН (1868). Учился в Военно-медицинском институте в Берлине. С 1849 профессор. С 1888 директор Государственного физико-технического института в Берлине. Заложил основы теории вихревого движения жидкости. Доказал основные теоремы и вывел уравнение для распределения вихрей в пространстве и во времени в движущейся идеальной жидкости. Один из основоположников теории обтекания жидкостью тел с отрывом струй (см. Струйных течений теория). Выдвинул принцип механического подобия.

Соч.: Два исследования по гидродинамике, пер. с нем., М., 1902.

Г. Л. Ф. Гельмгольц.

Гельмгольца — Кирхгофа теория обтекания — подход к исследованию безвихревых течений идеальной несжимаемой жидкости при наличии поверхностей тангенциального разрыва в отсутствие массовых сил; был предложен Г. Гельмгольцем в 1868 и Г. Кирхгофом в 1869. Наиболее эффективно этот метод используется для исследования плоских течений. В задачах обтекания тел безграничным однородным потоком анализ базируется на схеме течения (рис., а), характерной особенностью которой является отход линий тока от поверхности обтекаемого контура в точках B1 и B2. Эти свободные линии тока есть линии тангенциального разрыва, отделяющие область потенциального течения I от застойной зоны II. Так как давление в покоящейся невесомой жидкости постоянно, то в зоне II оно равно давлению на бесконечности, а вследствие его непрерывности при переходе через свободные линии тока B1C2 и B1C2 значение скорости на каждой из них в силу Бернулли уравнения равно значению скорости V{{}} невозмущенного потока. Форма свободных линий тока подлежит определению. Задача решается в плоскости комплексного переменного z = x + iy с началом координат в критической точке A. Если ввести комплексный потенциал {{ω}} = {{φ}} + i{{ψ}} такой, что потенциал скорости {{φ}}(х, у) и функция тока {{ψ}}(x, у) в точке A принимают нулевые значения, то в плоскости {{ω}} области течения I соответствует вся плоскость кроме разреза вдоль положительной оси {{φ}} (рис., б). Между плоскостью {{ω}} и областью течения I в плоскости z существует взаимно-однозначное соответствие, нахождение которого и решает задачу. Вместо отыскания зависимости между z и {{ω}} Кирхгоф поставил задачу о так называемом конформном отображении разрезанной плоскости {{ω}} на ту часть плоскости переменной {{ξ}} = dz/d{{ω}} = 1/{{V}} = exp(i{{Θ}})/V, которая соответствует области течения I в плоскости z (здесь {{V}} — величина; комплексно-сопряжённая скорости Vехр(i{{Θ}}), V и {{Θ}} — модуль и угол наклона к оси x вектора скорости V). Н. Е. Жуковский (1890) и английский учёный Митчелл (1890) видоизменили метод Кирхгофа путём введения переменкой {{ξ}} = ln(V{{}}/{{V}}) = ln(V{{}}/V) + i{{Θ}}. В обоих случаях отыскание конформного отображения проводится достаточно просто при обтекании контуров, состоящих из прямолинейных отрезков. Для анализа обтекания тела с криволинейным контуром метод был модифицирован в 1907 итальянским учёным Т. Леви-Чивита введением переменной {{ξ}} = iln{{V}} = {{Θ}} + ilnV.

Типичным примером является обтекание плоской пластины шириной 2b, установленной перпендикулярно потоку; решение задачи показывает, что свободные линии тока, простираясь вниз по потоку, асимптотически приближаются к параболе y2 = 8bx/({{π}} + 4), а коэффициент сопротивления (см. Аэродинамические коэффициенты) cx = 2{{π}}/({{π}} + 4) = 0,88 и значительно отличается от экспериментального значения cx = 2,0. Это различие обусловлено значительно более низким уровнем давления на задней стороне пластины (см. Донное сопротивление) и связано с неустойчивостью тангенциальных разрывов в жидкости. Поэтому в реальных потоках отрывная зона позади тела не простирается до бесконечности и имеет размеры порядка размеров обтекаемого тела; течение в следе аэродинамическом является нестационарным. Г. — К. т. о. широко применяется в гидродинамике капельной жидкости для анализа плоских и осесимметричных задач: глиссирование, истечение струй из отверстий и насадок и т. д.

Лит. смотри при статье Гидродинамика.

В. А. Башкин.

Схема обтекания (а) тела в физической плоскости и отображение (б) области потенциального течения I на плоскость комплексного потенциала {{ω}}; точки A, B1, B2, C1, C2 на плоскости z переходят соответственно в точки A', B1', B2', C1', C2' на плоскости {{ω}}.

геометрические характеристики летательного аппарата — определяют размеры и форму летательного аппарата и его основных частей (крыла, фюзеляжа, оперения, шасси и др.) в базовой системе координат летательного аппарата. Выражаются в абсолютных (линейные и угловые размеры, площади) и относительных (безразмерных) величинах. Г. х. летательного аппарата в целом включают его габаритные размеры: длину, высоту, размах крыла самолёта, диаметр несущего винта вертолёта и т. п. К важным Г. х. самолёта принадлежат также площадь крыла, хорда крыла, профиль крыла, угол стреловидности крыла, угол установки крыла, углы крутки крыла, угол поперечного V крыла, диаметр фюзеляжа, плечо вертикального (ВО) и горизонтального (ГО) оперения (см. Плечо оперения), база шасси, колея шасси. Распространёнными безразмерными Г. х. являются удлинение крыла и фюзеляжа, сужение крыла, относительные площади ВО и ГО, органов управления и устройств механизации крыла (в долях от площади крыла или — для рулей высоты и направления — от площади соответствующего оперения). Аэродинамические поверхности стабилизации, управления и механизации имеют набор Г. х., сходных с Г. х. крыла. К Г. х. принято также относить углы отклонения органов управления и устройств механизации. Г. х. вертолётов включают (наряду с диаметром несущего винта) ометаемую площадь несущего винта, заполнение несущего винта, угол заклинения несущего винта, коэффициент перекрытия несущих винтов и др.

Г. х. оказывают существенное влияние на аэродинамические, весовые, летно-технические и другие характеристики летательного аппарата, на его устойчивость и управляемость.

герметизация — обеспечение непроницаемости стенок и соединений в деталях, узлах и агрегатах летательного аппарата для предотвращения утечек газов и жидкостей. Различают Г. полную и неполную. Выбор методов и технологии Г. на летательном аппарате определяется назначением детали, узла, конструкции, характером действующих нагрузок и предполагаемой деформацией соединения. Для Г. пористых деталей (например, литых) в основном применяют пропитку их герметиками, в том числе анаэробными. Г. деталей из композиционных материалов производят креплением к ним непроницаемых плёнок. Для Г. проёмов люков применяют прокладки, формуемые из герметиков (непосредственно по месту уплотнения) и из резины. На подвижных соединениях и вращающихся валах ставят сальниковые, лабиринтные и другие уплотнения. Для Г. металлических неразъёмных соединений часто используют сварку, пайку, развальцовку, расчеканку, а также создают в местах сопряжения деталей натяг. Г. соединений с точечным и прерывистым силовым швом производится герметизирующими составами, которые после нанесения на шов и вулканизации в рабочем состоянии обладают достаточной эластичностью, прочностью, хорошей адгезией, коррозионной стойкостью и способностью не разрушаться под действием рабочей среды. Герметизирующие составы — полимерные композиции на основе синтетических каучуков (полисульфидных, кремнийорганических, кремнийфторорганических, уретановых и др.). Г. большинства заклёпочных, болтовых и других соединений планёра самолёта обеспечивается герметизирующими составами. Существуют 3 основных метода Г.: поверхностный, внутришовный и комбинированный. Перед нанесением герметика необходимы тщательная очистка и обезжиривание поверхностей соединения.

О. А. Брук.

герметики — полимерные композиции пастообразной или вязкотекучей консистенции, предназначенные для герметизации. Широкое применение нашли двухкомпонентные самовулканизующиеся Г., которые представляют собой пастообразные или вязко-текучие композиции на основе жидких каучуков, минеральных наполнителей и других ингредиентов и вулканизующего агента. Их общее свойство — способность под влиянием вводимых в композицию вулканизующих агентов переходить при комнатных температураx из пластичного состояния в эластичное, образуя плотные резиноподобные покрытия на поверхности деталей. Наряду с двухкомпонентными Г. существуют однокомпонентные, которые поставляются в готовом виде в тубах и вулканизуются при контакте с влагой воздуха. Самовулканизующиеся пасты — наиболее распространённый и совершенный вид Г. Свойства самовулканизующихся Г. определяются химической природой основного полимера. В соответствии с этим их разделяют на полисульфидные, фторорганические и кремнийорганические.

Полисульфидные (тиоколовые) Г. обладают высокой стойкостью к действию нефтяных топлив, масел, воды, света, озона. Применяются для поверхностной и внутришовной герметизации соединений, работающих при температураx от —60 до 150{{°}}С. Герметики У-30М и У-30МЭС-5 (разработанные в 1955—1957) позволили обеспечить надёжную герметизацию высотных кабин, а также топливных отсеков. Г. этого типа (в том числе однокомпонентные, например ВИТО-1) широко применяются в конструкциях всех пассажирских самолётов.

Фторорганические Г. обладают стойкостью к различным агрессивным средам. Предназначаются для герметизации соединений, работающих в топливной среде при температурах от -20 до 200{{°}}C. В отличие от другие самовулканизующихся Г. они содержат растворитель, поэтому в большинстве случаев для ускорения их сушки и вулканизации применяется нагрев.

Отличительная особенность кремнийорганических (полисилоксановых) Г. — сочетание высокой тепло- и морозостойкости с устойчивостью к различным факторам старения (тепловому, светоозонному и другим). Разработан широкий ассортимент таких Г., в том числе однокомпонентных, с различными свойствами. В авиастроении наибольшее применение находят герметики У4-21 и У2-28 для поверхностной и внутришовной герметизации кабин сверхзвуковых самолётов и элементов двигателей, а также Г.-компаунды (например, ПК-68), Благодаря технологичности и отсутствию коррозионного воздействия на цветные металлы они широко используются для герметизации авиационных приборов. Большинство кремнийорганических Г. предназначено для работы в воздушной среде при температураx от —60 до 300{{°}}С. Созданы специальные термостойкие (до 400{{°}}С) и морозостойкие Г. (например, УФ-7-21, используемый и в космической технике, способен сохранять эластичность в интервале от —120 до 300{{°}}С), а также Г., способные работать в топливе при температураx от -60 до 250{{°}}С (например, ВГФ-4-10).

Н. Б. Барановская.

гермокабина — изолированный объём летательного аппарата с регулируемыми избыточным давлением воздуха, температурой и т. п., предназначенный для работы экипажа и полёта пассажиров на большой высоте. Необходимые условия в Г. могут обеспечиваться вентиляционной, кислородно-вентиляционной или регенерационной высотными системами (см. Система жизнеобеспечения). Наиболее распространена вентиляционная система с системой кондиционирования воздуха. Вентиляционная система обеспечивает регулирование температуры, влажности и газового состава атмосферы Г., равномерное распределение воздуха вдоль кабины, охлаждение или нагрев воздуха до и после полёта (на земле) и автоматическое поддержание в полёте эксплуатационного давления, различного для самолётов разных типов. Г. могут быть малых объёмов (для лёгких и боевых летательных аппаратов) и больших объёмов (для транспортных и пассажирских летательных аппаратов).

Г. первого типа имеют минимальные размеры, регламентированные специальными нормами; предназначаются для размещения экипажа, приборов и механизмов, служащих для управления и контроля режима полёта летательного аппарата. Г. большого объёма предназначены для размещения экипажа, приборов, пассажиров и груза. Назначение Г. определяет ее размеры. Специальные нормы регламентируют объем Г., приходящийся на одного пассажира, поэтому общие габариты Г. пропорциональны числу размещаемых пассажиров (или массе груза).

Основная нагрузка конструкции Г. — внутреннее избыточное давление, действующее циклически (один цикл — полёт летательного аппарата). Поэтому формы сечения Г. обычно состоят из окружностей или полуокружностей, а днища часто имеют форму сферы. Одновременно в конструкции Г. стремятся максимально сократить число продольных и поперечных стыков в оболочке, применять наиболее надёжные и долговечные материалы для обшивки, шпангоутов и стрингеров, выбирать оптимальные напряжения в обшивке и уменьшать концентрацию напряжений в местах вырезов под проёмы дверей, окон, люков и т. д. На современных летательных аппаратах в целях снижения массы конструкции Г. часто выполняются как единое целое с фюзеляжем, поэтому одновременно с внутренним избыточным давлением на конструкцию действуют и внешние нагрузки.

В. К. Рахилин.

гибридный двигатель — то же, что комбинированный двигатель.

гибридный летательный аппарат — летательный аппарат, у которого для создания подъёмной силы используется сочетание аэростатического и аэродинамического принципов. Идея первых гибридных или комбинированных аэростатических летательных аппаратов, называемых также микстами от латинского mixtus — смешанный), заключалась в использовании аэродинамической подъёмной силы для управления полётом в вертикальной плоскости. В качестве средств создания аэродинамической подъёмной силы рассматривали воздушные винты, а также расположенные под углом атаки корпус летательного аппарата или крыло. Этим также решалась частично проблема балластировки, присущая дирижаблям классической схемы. Одним из первых Г. л. а. был аппарат Розе (Франция), построенный в 1901. Основными. его элементами являлись две сигарообразные оболочки, два вертикальных и два горизонтальных винта и несколько прямоугольных поверхностей, установленных под различными углами атаки. Однако испытания выявили недостаточность вертикальной тяги винтов аппарата, и дальнейшего развития он не получил. В последующем идея Г. л. а. развивалась в направлении увеличения доли аэродинамической составляющей полной подъёмной силы до значения, примерно соответствующего весу полезной нагрузки, и уменьшения доли аэростатической составляющей до уровня, близкого к весу ненагруженного летательного аппарата. Этим наиболее просто мог бы быть реализован принцип безбалластности и обеспечена возможность изменения динамической подъёмной силы для целей управления. Вместе с приобретением новых свойств Г. л. а. теряют преимущества, присущие чисто аэродинамическим и аэростатическим летательным аппаратам. Так, Г. л. а. на основе комбинации корпуса дирижабля и вертолётных несущих винтов утрачивает преимущество дирижабля, заключающееся в малом расходе топлива, и преимущества вертолёта, связанные с возможностью продолжительного зависания и безаэродромного базирования. Среди многочисленных разработок Г. л. а. 70—80-х гг. следует отметить доведённый до реализации проект “Гелистат” американской фирмы “Пясецкий эркрафт”. Аппарат был спроектирован на основе оболочки дирижабля ZPG-2 полужесткой конструкции объёмом 27 тысяч м3 и четырёх вертолётов Сикорский SH-34G. Взлетная масса летательного аппарата 48,6 т. В первом полёте в июле 1986 “Гелистат” потерпел катастрофу и полностью разрушился.

гидравлический удар — резкое повышение давления в трубопроводе при быстром закрытии крана, обусловленное резким торможением потока жидкости. Упругая волна сжатия распространяется от крана вверх по потоку с эффективной скоростью сэ, которая зависит от свойств жидкости и жёсткости трубопровода. Теория Г. у. дана Н. Е. Жуковским (1898); согласно его теории, повышение давления {{Δ}}p в трубопроводе при мгновенной остановке потока жидкости с плотностью {{ρ}}, текущей до остановки со скоростью v, выражается формулой {{Δ}}p = {{ρ}}сэv.

Для абсолютно жёсткого трубопровода сэ равна скорости звука в жидкости с. Так, для воды с = 1500 м/с и при v = l м/с {{Δ}}p = 1,5 МПа. Упругость стенок трубы снижает скорость сэ до значения, которое приближенно рассчитывается по формуле

сэ = (1-d/{{δ}}-E/Ec)-1/2

где d и {{δ}} — диаметр и толщина стенок трубы, E и Ec — модули упругости жидкости и материала стенок трубы (для воды и стали E/Ec {{}} 0,02). При медленном закрытии крана значение {{Δ}}p существенно снижается. Если время закрытия крана tз длина трубы l то при условии ctз > > l приближённо справедлива формула {{Δ}}p = {{ρ}}vl/tз. Поэтому с целью избежания Г. у. клапаны и задвижки в трубопроводах делаются с винтовым приводом, реализующим медленное торможение потока.

При ударе твёрдых тел о воду возникают явления по физическому существу близкие к гидравлическому удару. На плоских поверхностях соприкосновения тела и жидкости в начальный момент времени возникают явления, также определяемые по формуле Жуковского, а внутрь жидкости и тела распространяются волны сжатия. Дальнейшее погружение тела в жидкость порождает сложное течение, изучаемое в теории удара тела о жидкость.

Г. В. Логвинович.

гидравлическое оборудование летательного аппарата — предназначается для привода в действие различных бортовых функциональных систем — потребителей. Г. о. содержит источники давления (насосы, гидроаккумуляторы), баки с рабочей жидкостью, трубопроводы, арматуру, различные клапаны, фильтры, гасители пульсаций, приборы контроля, защиты и сигнализации. В число потребителей гидравлической энергии входят исполнительные механизмы отклонения органов управления (гидроусилители, рулевые приводы, рулевые машинки), уборки и выпуска шасси, управления воздухозаборниками двигателей, тормозные механизмы колес шасси и т. д. Работа насосов без кавитации при полёте летательного аппарата в разреженной атмосфере или космосе достигается созданием герметичного Г. о. с избыточным давлением внутри него. Поддержание рабочего давления в заданных пределах осуществляется стабилизаторами давления (регуляторами насосов, автоматами разгрузки). Для защиты Г. о. от перегрева используются топливожидкостные теплообменники. В целях безопасности полётов Г. о. обычно выполняется с резервированием (кратность 2—4). На некоторых летательных аппаратах дополнительно устанавливают аварийное Г. о., которое при отказе основной системы приводится в действие ветродвигателями, выдвигаемыми в воздушный поток, электродвигателями или газовыми турбинами с приводом от вспомогательной силовой установки.

Масса Г. о. составляет 1—1,5% взлётной массы для тяжёлых, 2—3% для лёгких манёвренных самолётов и 1—2% для вертолётов. Установочная мощность Г. о. различных летательных аппаратов от 0,75 кВт до 2 МВт, давление от 7 до 28 МПа, объём рабочей жидкости от 6 до 850 л, длина трубопроводов от 40 до 5000 м, рабочий диапазон температур от —60 до 180{{°}}С. Преимущества Г. о. перед электрическими и пневматическими системами заключаются в достижении значительных удельных сил и мощностей, в широких пределах плавного изменения скоростей перемещения механизмов и высокой степени устойчивости к внешним нагрузкам. До 40-х гг. в основном применялись простейшие гидропередачи с ручным приводом. С середины 30-х гг. до середины 50-х гг. в военной авиации и ракетной технике использовалось Г. о. с комплексными автономными электрогидравлическими приводами, питаемыми бортовой электросетью. С 50-х гг. широкое распространение получило Г. о. с приводом от маршевого двигателя, включающее насосы постоянной подачи с автоматом нагрузки или насосы переменный подачи. Г. о. с приводом от электродвигателей применяется на летательных аппаратах с невысокой мощностью насосов. С 80-х гг. внедрены насосы переменный подачи с электромагнитным клапаном разгрузки.

А. Г. Тер-Симонян.

гидроаэродром — специально подготовленный водный участок и прилегающая прибрежная территория, включающие комплекс сооружений и оборудования для обеспечения эксплуатации гидросамолётов.

Г. располагают на морях, реках, озёрах и искусственных водоёмах. Г. состоит из 3 основных зон — лётной, служебно-технической и жилой. Лётная зона — участок водной поверхности (акватория), подготовленный для взлёта и посадки, руления и стоянки, обслуживания и хранения гидросамолётов,, а также для движения плавучих средств. Акватория Г. состоит из лётного бассейна, полосы руления и гавани. Лётный бассейн предназначается для взлёта и посадки гидросамолётов. На речных Г. лётный бассейн имеет форму лётной полосы длиной около 1 км и шириной около 100 м. На морских и озёрных Г. лётный бассейн может иметь форму круга, квадрата или прямоугольника и позволяет производить взлёт и посадку во многих направлениях. Полоса руления окаймляет лётный бассейн и предназначена для руления гидросамолётов до взлёта и после посадки. Гавань служит для стоянки и обслуживания гидросамолетов на плаву, а также для стоянки плавучих средств обслуживания гидросамолётов. Акватория Г. должна иметь свободные воздушные подходы в направлениях взлёта и посадки. На береговом участке, примыкающем к акватории, располагаются служебно-техническая и жилая зоны Г. Служебно-техническая зона состоит из зданий для обслуживания пассажиров, обработки грузов, управления полётами и сооружений — причалов, пирсов, гидроспусков, складов для хранения авиатоплива и масел, авиаремонтных мастерских и др.

А. П. Журавлёв.

План гидроаэродрома: 1 — лётный бассейн; 2 — плавучие оградительные знаки; 3 — гавань; 4 — мол; 5 — пассажирская пристань; 6 — аэровокзал; 7 — привокзальная площадь; 8 — гараж; 9 — стоянки гидросамолётов на плаву; 10 — стапель; 11 — грузоподъёмный кран; 12 — рулёжные дорожки; 13 — манёвренные площадки; 14 — ангары; 15 — открытые стоянки; 16 — служебные здания; 17 — склад запасных частей; 18 — хранилище горючего; 19 — пожарное депо; 20 — здание охраны; 21 — пристань для плавучих средств; 22 — жилые дома; 23 — авиаремонтные мастерские.

гидродинамика — раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью, законы и методы Г. широко используются для аэродинамических расчётов летательных аппаратов при малых дозвуковых скоростях полёта. Большинство капельных жидкостей, например, вода, обладают слабой сжимаемостью, и во многих важных случаях их плотность {{ρ}} можно считать постоянной. Однако сжимаемостью среды нельзя пренебрегать в задачах взрыва, удара и других случаях, когда возникают большие ускорения частиц жидкости и от источника возмущений распространяются упругие волны.

Фундаментальные уравнения Г. выражают собой сохранения законы массы (импульса и энергии). Если предположить, что движущаяся среда является ньютоновской жидкостью и для анализа её движения применить метод Эйлера, то течение жидкости будет описываться неразрывности уравнением, Навье — Стокса уравнениями и энергии уравнением. Для идеальной несжимаемой жидкости уравнения Навье — Стокса переходят в Эйлера уравнения, а уравнение энергии выпадает из рассмотрения, поскольку динамика течения несжимаемой жидкости не зависит от тепловых процессов. В этом случае движение жидкости описывается уравнением неразрывности и уравнениями Эйлера, которые удобно записать в форме Громеки — Ламба [по имени русский учёного И. С. Громеки и английского учёного Г. Ламба (Н. Lamb)]:

divV = 0,

{{формула}}

где V — вектор скорости, {{ω}} = rotV — вектор завихренности, F — вектор массовой силы, р — давление гидродинамическое.

Для практических приложений важны интегралы уравнений Эйлера, которые имеют место в двух случаях:

а) установившееся движение при наличии потенциала массовых сил (F = -gradΠ); тогда вдоль линии тока будет выполняться Бернулли уравнение

{{формула}}

правая часть которого постоянна вдоль каждой линии тока, но, вообще говоря, меняется при переходе от одной линии тока к другой. Если жидкость вытекает из пространства, где она покоится, то постоянная Бернулли H одинакова для всех линий тока;

б) безвихревое течение: ({{ω}} = rotV = 0. В этом случае V = grad{{φ}}, где {{φ}} — потенциал скорости, и массовые силы обладают потенциалом. Тогда для всего поля течения справедлив интеграл (уравнение) Коши — Лагранжа д{{φ}}/дt + V2/2 + p/{{ρ}} + П = H(t). В обоих случаях указанные интегралы позволяют определить поле давлений при известном поле скоростей.

Интегрирование уравнения Коши — Лагранжа в интервале времени {{Δ}}t{{}}0 в случае ударного возбуждения течения приводит к соотношению, связывающему приращение потенциала скорости с импульсом давления pi. Для произвольной точки пространства имеем

{{формула}}

Всякое движение первоначально покоящейся жидкости, вызванное силами веса или нормальными давлениями, приложенными к её границам, потенциально. Для реальных жидкостей, обладающих вязкостью, условие {{ω}} = 0 выполняется лишь приближённо: вблизи обтекаемых твёрдых границ существенно сказывается вязкость и образуется пограничный слой, где {{ω ≠ }}0. Несмотря на это, теория потенциальных течений позволяет решать ряд важных прикладных задач.

Поле потенциального течения описывается потенциалом скорости {{φ}}, который удовлетворяет уравнению Лапласа

divV = {{Δφ}} = 0.

Доказано, что при заданных граничных условиях на поверхностях, ограничивающих область движения жидкости, его решение единственно. В силу линейности уравнения Лапласа справедлив принцип суперпозиции решений и, следовательно, для сложных течений решение можно представить как сумму более простых течений (см., например, статью Источников и стоков метод). Так, при продольном обтекании однородным потоком отрезка с распределёнными по нему источниками и стоками с равной нулю суммарной интенсивностью образуются замкнутые поверхности тока, которые можно рассматривать как поверхности тел вращения, например, корпуса летательного аппарата.

Если в неограниченной области задана некоторая замкнутая поверхность S и n есть единичный вектор нормали к этой поверхности, направленный внутрь жидкости, то импульс силы В, сообщённый жидкости движением этой поверхности, и кинетическая энергия жидкости T будут определяться формулами

{{формула}}

Для твёрдых движущихся тел величины B и T можно выразить через присоединённые массы и скорости тел. В частности, при движении тела без вращения вдоль оси x со скоростью Vx, имеем Bx = {{λ}}xVx и T = {{λ}}xV2x/2, где {{λ}}x, — присоединённая масса в направлении оси x, пропорциональная плотности жидкости и зависящая только от размеров и формы тела. Сила R, действующая на жидкость со стороны тела, есть R = dB/dt или VxR = dT/dt. Поэтому при поступательном равномерном движении твёрдого тела в идеальной жидкости B = const и, следовательно, R = 0 (Д'Аламбера — Эйлера парадокс). При движении тела в реальной жидкости всегда возникают гидродинамические силы из-за его взаимодействия с жидкостью. Одна часть суммарной силы обусловлена присоединёнными массами и пропорциональна скорости изменения связанного с телом импульса примерно так же, как в идеальной жидкости. Другая часть суммарной силы связана с образованием следа аэродинамического за телом, который формируется в течение всей истории движения. След влияет на поле течения вблизи тела, поэтому численное значение присоединённой массы может не совпадать с его значением для аналогичного движения в идеальной жидкости. След за телом может быть ламинарным или турбулентным, может образовываться свободными границами, например, за глиссером.

Аналитические решения нелинейных задач, связанных с пространственным движением тел в жидкости при наличии следа, удаётся получить лишь в некоторых частных случаях.

Плоскопараллельные течения исследуются методами теории функций комплексного переменного; эффективно решение некоторых задач гидродинамики методами вычислительной математики. Приближенные теории получаются путём рациональной схематизации картины течения, применения теорем сохранения, использования свойств свободных поверхностей и вихревых течений, а также некоторых частных решений. Они разъясняют суть дела и удобны для предварительных расчётов. Например, при быстром погружении в воду клина с углом полураствора {{β}}к возникает существенное движение свободных границ в области брызговых струй. Для оценки сил важно оценить эффективную смоченную ширину клина, которая значительно превышает соответствующую величину при статическом погружении острия на ту же глубину h. Приближенная теория для симметричной задачи показывает, что отношение динамической смоченной ширины 2a к статической близко к {{π}}/2 и приводит к следующим результатам: a = 0,5{{π}}hctg{{β}}, где {{β}} = {{π}}/2-{{β}}к, удельная присоединённая масса m* = 0,5{{πρ}}a2/({{β}}) [f({{β}}) {{}} 1-(8 + {{π}})tg{{β}}/{{π}}2 для {{β}} < 30{{°}}], B = m*dh/dt — вертикальный компонент удельного импульса, F = d(m*dh/dt)/dt —сила давления клина на жидкость.

При установившемся глиссировании килеватой пластинки со скоростью V{{}} течение в поперечной плоскости непосредственно за транцем весьма близко к течению, возбуждённому погружающимся клином. Поэтому приращение вертикального компонента импульса сообщаемого жидкости в единицу времени, близко к BV{{}} = m*V{{}}dh/dt. Импульс жидкости направлен вниз; реакция, действующая на тело, есть подъёмная сила Y. Для малых углов атаки {{α}} dh/dt = {{α}}V{{}}, и Y = m*(h)V2{{α}}.

За телом, движущимся в неограниченной жидкости с постоянной скоростью V{{}} и обладающим подъёмной силой Y, образуется вихревая пелена, которая далеко за телом сворачивается в 2 вихря с циркуляцией скорости Γ и расстоянием l между ними, которые замыкаются начальным вихрем. Вследствие взаимодействия эта пара вихрей наклонена к направлению движения на угол {{α}}, определяемый соотношением sin{{α}} = Γ/(2{{π}}/V{{}}). Из теорем о вихрях следует, что импульс сил B, который нужно приложить к жидкости для возбуждения замкнутой вихревой нити с циркуляцией Γ и площадью диафрагмы S, ограниченной этой вихревой нитью, равен {{ρ}}ΓS и направлен перпендикулярно плоскости диафрагмы. В рассматриваемом случае Γ = const, скорость приращения диафрагмы dS/dt = lV{{}}/cos{{α}}, вектор гидродинамической силы R = dB/dt и, следовательно, Y = {{ρ}}V{{}} и индуктивное сопротивление Xинд = {{ρ}}V{{}}tg{{α}}инд, причем {{α}}инд = {{α}}.

Как в случае глиссирования, так и для любых несущих систем сопротивление определяется кинетической энергией жидкости, приходящейся на единицу длины оставляемого телом следа. Общий вывод состоит в том, что при сходе с тела свободных границ всю совокупность действующих сил можно приближённо разделить на 2 части, одна из которых определяется производными по времени от “связанных” импульсов, а вторая потоками “стекающих” импульсов.

При больших скоростях движения в потенциальном потоке могут возникать очень малые положительные и даже отрицательные давления. Жидкости, встречающиеся в природе и применяемые в технике, в большинстве случаев не способны воспринимать растягивающие усилия отрицательного давления), и обычно давление в потоке не может принимать значения меньше некоторого pd. В точках потока жидкости, в которых давление p = pd, происходит нарушение сплошности течения и образуются области (каверны), заполненные парами жидкости или выделившимися газами. Это явлен называется кавитацией. Возможным нижним пределом pd является давление насыщенных паров жидкости, зависящее от температуры жидкости.

При обтекании тел максимум скорости и минимум давления имеют место на поверхности тела и наступление кавитации определяется условием

Cpmin = 2(p{{}}-pd){{ρ}}V2{{}} = {{σ}},

где {{σ}} — число кавитации, Cpmin — минимальное значение коэффициента давления.

При развитой кавитации позади тела образуется каверна с резко выраженными границами, которые можно рассматривать как свободные поверхности и которые образованы частицами жидкости, сошедшими с обтекаемого контура в точках схода струй. Явления, происходящие в области смыкания струй, ограничивающих каверну, еще не вполне изучены; опыт показывает, что кавитационное течение имеет нестационарный характер, особенно сильно выраженный в области смыкания.

Если {{σ}} > 0, то давление в набегающем потоке и в бесконечности за телом больше, чем давление внутри каверны, и поэтому каверна не может простираться до бесконечности. При уменьшении σ размеры каверны возрастают и область замыкания удаляется от тела. При {{σ}} = 0 предельное кавитационное течение совпадает с обтеканием тел со срывом струй по схеме Кирхгофа (см. Струйных течений теория).

Для построения стационарного струйного течения используются различные идеализированные схемы, например, такая: свободные поверхности, сходящие с поверхности тела и направленные выпуклостью к внешнему потоку, при смыкании образуют струю, стекающую внутрь каверны (при математическом описании уходит на второй лист римановой поверхности). Решение такой задачи проводится методом, аналогичным методу Гельмгольца — Кирхгофа: В частности, для плоской пластины ширины l, установленной перпендикулярно набегающему потоку, коэффициент сопротивления cx, вычисляется по формуле

cx = cx0(1 + {{σ}}),

где cx0 = 2{{π}}/({{π}} + 4) — коэффициент сопротивления пластины, обтекаемой по схеме Кирхгофа. Для. пространственных (осесимметричных) каверн справедлив приближённый принцип независимости расширения, выражаемый уравнением

d2S/dt2 {{}} -K(p{{}}-pк)/{{ρ}},

где S(t) — площадь поперечного сечения каверны в неподвижной плоскости, перпендикулярной к траектории центра кавитатора p{{}}(t) —давление в рассматриваемой точке траектории, которое было бы до образования каверны; pк — давление в каверне. Константа К пропорциональна коэффициенту сопротивления кавитатора; для тупых тел К ~ 3.

С явлением кавитации приходится встречаться во многих технических устройствах. Начальная стадия кавитации наблюдается при заполнении имеющейся в потоке области пониженного давления пузырьками газа или пара, которые, схлопываясь, вызывают эрозию, вибрации и характерный шум. Пузырьковая кавитация возникает на гребных винтах, в насосах, трубопроводах и других устройствах, где из-за повышеной скорости давление понижается и приближается к давлению парообразования. Развитая кавитация с образованием каверны с низким давлением внутри имеет место, например, за реданами гидросамолётов, если подток воздуха в зареданное пространство оказывается стеснённым. Такие каверзы приводят к автоколебаниям, так называемым барсу. Срыв каверн на подводных крыльях и на лопастях гребных винтов приводит к снижению подъёмной силы крыла и “упора” винта.

Экспериментальная Г. помимо традиционных гидроканалов (опытовых бассейнов) располагает широким ассортиментом специальных установок, предназначенных для изучения быстропротекающих нестационарных процессов. Применяются скоростная киносъёмка, визуализация течений и другие методы. Обычно на одной модели нельзя удовлетворить всем требованиям подобия (см. Подобия законы), поэтому широко применяется “частичное” и “перекрёстное” моделирование. Моделирование и сравнение с теоретическими результатами является основой современных гидродинамических исследований.

Лит.: Кочин Н. Е., Кибель И. А., Розе Н. В., Теоретическая гидромеханика, 4 изд., Л. — М., 1948—63; Логвинович Г. В., Гидродинамика течений со свободными границами, Киев, 1969; Седов Л. И., Плоские задачи гидродинамики и аэродинамики, 3 изд., М., 1980.

Г. В. Логвинович.

Гидроканал Центрального аэрогидродинамического института.

гидроканал, опытовый бассейн, — сооружение для испытаний буксировкой моделей судов, гидросамолётов и др. Обычно Г. представляет собой (см. рис.) бассейн; вдоль его бортов укладывают рельсы, по которым с помощью электропривода перемешается с заданной скоростью (до 30 м/с) буксировочная тележка. Модель крепится к тележке системой тяг, связанных с динамометрами и индикаторами углов хода. Во время экспериментов измеряются подъёмные силы, сопротивление, углы тангажа, оценивается брызгообразование, осуществляется визуализация течений и т. п.

При буксировке моделей судов или лодок гидросамолётов в Г. по поверхности воды существенны силы инерции, тяжести и трения, то есть подобия законы Фруда и Рейнольдса. Однако удовлетворить обоим этим законам подобия одновременно практически не удаётся и обычно отдаётся предпочтение закону подобия, характеризующемуся числом Фруда Fr(Fr = V2/gL; V — скорость набегающего потока, g — ускорение свободного падения, L — характерный линейный размер), поскольку при этом моделируются подъёмные силы, волнообразование и поведение модели в целом (брызгообразование и естественная кавитация при выполнении закона подобия Фруда полностью все же не моделируются). Рейнольдса числа получаются значительно меньше натурных, поэтому силы трения и их влияние на течение учитываются специальными поправками (масштабный эффект).

Большие Г. (длина 1000—1500 м, ширина 20—25 м, глубина 5—10 м) имеют многотонную буксировочную тележку, на которой размещаются бригада экспериментаторов, измерительная, киносъёмочная и вычислительная техника. Малые Г. снабжаются лёгкой буксировочной тележкой (без экипажа), приводимой в движение линейным двигателем и снабжённой автоматической регистрирующей аппаратурой. Практически все Г. оборудуются устройствами для образования волн (волнопродукторами).

Г. В. Логвинович.

гидромодель аэростата — модель аэростата, наполненная жидкостью; позволяет имитировать напряженное состояние корпуса аэростата, наполненного подъёмным газом. Г. а. используются главным образом для оценки формы и деформации корпуса (оболочки) нежёстких дирижаблей (рис. 1), привязных и свободных аэростатов (стратостатов, рис. 2). Измеряя деформации, оценивают натяжения в оболочке. В основу методов, использующих Г. а., положены условия статического подобия и равенства относительных деформаций. Обычно оболочка Г. а. изготавливается из тех же материалов, что и оболочка аэростата. При этом подобие деформаций возможно только при равенстве натяжений в оболочке аэростата и модели. Идея использования Г. а. впервые была высказана К. Э. Циолковским в его книге “Аэростат металлический управляемый” (Калуга, 1893).

Рис. 1. Гидромодель нежесткого аэростата.

Рис. 2. Гидромодели свободного аэростата (вверху) и стратостата (внизу).

гидроплан — то же, что гидросамолёт.

гидросамолёт — самолёт, способный взлетать с водной поверхности и садиться на неё, а также маневрировать на воде. Г. должен обладать плавучестью, остойчивостью, непотопляемостью, устойчивостью движения по воде, мореходностью, приемлемым брызгообразованием.

Под плавучестью понимается способность Г. плавать при заданной массе, сохраняя определенную ватерлинию; под остойчивостью — способность при отклонении от исходного равновесного положения возвращаться к нему; под непотопляемостью — способность при затоплении несколько отсеков фюзеляжа и поплавков сохранять плавучесть и остойчивость; под мореходностью — способность пилотируемого Г. при определенном морском волнении и ветре совершать плавание, дрейф, маневрирование на воде, взлёт с воды и посадку на воду. Г. должен также обладать достаточной энерговооружённостью (тяговооружённостью) для нормального взлёта с воды.

Г. обычно строятся по схеме высокоплана с высокорасположенными двигателями во избежание их заливания или забрызгивания (рис. 1). В зависимости от взлётно-посадочных устройств и органов плавания различают Г. лодочные, поплавковые, амфибии и Г. на подводных крыльях или гидролыжах. Основной тип Г. — летающая лодка. Распространены также поплавковые Г., особенно двух поплавковые (рис. 2). Система из двух поплавков обладает плавучестью, остойчивостью и удовлетворительными гидродинамическими и мореходными свойствами. Двухпоплавковый Г. имеет по сравнению с летающей лодкой повышенную массу конструкции и увеличенное аэродинамическое сопротивление. Однопоплавковые Г. обычно имеют небольшую полётную массу и чаще эксплуатируются со взлётом при помощи катапульты с палубы корабля или другого носителя (с посадкой на воду). В практике нередки случаи переделки лёгких сухопутных самолётов в поплавковые Г. Амфибии (рис. 3, 4) представляют собой Г., снабжённые сухопутным шасси; способны взлетать как с водной поверхности, так и с сухопутного аэродрома и садиться на гидроаэродром или сухопутный аэродром. Особый тип Г. представляют самолеты лодочного типа, снабжённые дополнительными взлётно-посадочными устройствами в виде гидролыж и подводных крыльев, убирающихся в полёте. Цель установки этих устройств — улучшение гидродинамических и мореходных характеристик Г. Установка подобных взлётно-посадочных устройств связана с усложнением конструкции и увеличением её массы.

Первый успешно летавший Г. был продемонстрирован А. Фабром в 1910. В России Г. в 1913 начал строить Д. П. Григорович (см. Григоровича самолёты). В советский период разработки в этой области проводили Григорович, А. Н. Туполев (см. Ту), Г. М. Бериев (см. Бe), В. Б. Шавров, И. В. Четвериков, Р. Л. Бартини, А. К. Константинов и другие конструкторы.

А. И. Тихонов.

Рис. 1. Гидросамолёт с поддерживающими поплавками на концах крыла.

Рис. 2. Двухпоплавковый гидросамолёт.

Рис. 3. Самолёт-амфибия.

Рис. 4. Самолёт-амфибия “Си Стар” (ФРГ).

гиперзвуковая скорость — 1) скорость V газа, намного превышающая местную скорость звука a: V > > a (Маха число M > > 1). 2) Г. с. полёта — скорость летательного аппарата, намного превышающая скорость звука в невозмущенном потоке (часто за полёт с Г. с. принимают полёт со скоростью, соответствующей значению M{{}} > 5). Полёт с Г. с. в атмосфере сопровождается интенсивными ударными волнами, значительным аэродинамическим нагреванием (см. Гиперзвуковое течение).

гиперзвуковое течение — течение газа с гиперзвуковыми скоростями. Особенности Г. т. начинают заметно проявляться при достаточно больших, но различных для тел разной формы (сфера, конус и т. п.) значениях Маха числа М. Поэтому и граница, отделяющая сверхзвуковое течение от Г. т., весьма условна. Для всех Г. т. характерным является большое значение отношения кинетическая энергия (энергии поступательного движения частиц газа) к внутренней (тепловой) энергии газа, равное по порядку величины М2. Вследствие этого в Г. т. относительное изменение температуры и других термодинамических параметров много больше относительного изменения скорости, и торможение обтекающего тело потока приводит к значительным возмущениям его параметров. При гиперзвуковом обтекании тел возникают интенсивные ударные волны и большая завихренность течения (см. Вихревое течение). Для расчёта таких течений становиться необходимым использование нелинейных уравнений движения, а также соотношений, описывающих термодинамику газа при больших температурах. Полёт летательного аппарата с гиперзвуковыми скоростями сопровождается сильным аэродинамическим нагреванием поверхности и значительными отличиями аэродинамических характеристик от аналогичных характеристик при сверхзвуковом полёте.

Особенности Г. т. удобно разделить на газодинамические, обусловленные большими значениями чисел М, и термодинамические, проявляющиеся при больших абсолютных температурах газа (характерных для гиперзвуковых режимов полёта летательных аппаратов).

Газодинамические особенности Г. т. связаны с относительными изменениями газодинамических переменных потока. При обтекании тела однородным потоком газа с числом Маха в невозмущенном набегающем потоке М{{}} > > 1 мерой возрастания давления и внутренней энергии газа в возмущенной части поля течения служит при слабом влиянии вязкости параметр K1 = M{{}}sin{{τ}} ({{τ}} — характерный угол наклона поверхности тела к направлению невозмущенного потока). В случае K1 > > 1 за головной ударной волной существенно увеличивается плотность, многократно возрастают давление и температура газа. На границе возмущенного и невозмущенного потоков возникают тонкие, примыкающие к носовой части тела слои газа с относительно большой плотностью (так называемые ударные слои — см. Ньютона теория обтекания). При K1 > > 1 в общем балансе сил и энергии можно пренебречь давлением и внутренней энергией невозмущенного газа. Независимость (точнее слабая зависимость) характеристик течения от этих параметров набегающего потока — одно из важных свойств Г. т. Для случая совершенного газа это свойство равносильно независимости течения от значения М{{}} (закон стабилизации по числам Маха). Другая важная особенность течений с М > > 1, связанная с сильным торможением потока внутри пограничного слоя, — слабое влияние вязкости (температуры) невозмущенного газа на вязкость газа в пограничном слое. Поэтому в качестве характерного Рейнольдса числа Re, определяющего режим Г. т., принято использовать параметр Re0 = {{ρ}}V{{}}L/{{μ}}0, где {{ρ}}, V{{}} — плотность и скорость набегающего потока, L — характерный размер тела, {{μ}}0 — характерное значение вязкости в пограничном слое. Для совершенного газа в качестве {{μ}}0 удобно выбирать вязкость при температуре торможения.

Особые газодинамические свойства присущи случаю гиперзвукового обтекания тонких тел (см. Тонкого тела теория), установленных под малыми углами к направлению однородного набегающего потока ({{τ}} < < 1, M{{}} > > 1). Для таких течений углы наклона головной ударной волны к направлению вектора V{{}} всюду малы, число Маха за волной (вне пограничного слоя) велико, а скорость газа меняется (в основном приближении) лишь в направлении, перпендикулярном V{{}}. Последнее равносильно тому, что в системе координат, связанной с невозмущенным потоком, смещение частиц газа происходит лишь в плоскостях, перпендикулярных направлению движения. Течение в каждой из таких плоскостей не зависит от течения в остальных, что и составляет содержание закона плоских сечений из которого следует нестационарная аналогия. Согласно этой аналогии, обтекание тела невязким газом при {{τ}} < < 1 и М{{}} > > 1 сводится к нестационарной задаче расширения (сжатия) бесконечного цилиндрического поршня, находящегося в покоящемся газе. Поперечное сечение поршня в момент времени t = x/V{{}}, где x — координата, отсчитываемая от вершины тела и параллельная V{{}}, совпадает с поперечным сечением тела в плоскости х.

Структура течения около тонкого тела существенно нарушается, если тело затуплено. Тогда на носовой части тела sin{{τ}} ~ 1, и возмущения потока в этой области течения относительно велики. По этой причине вблизи поверхности тела образуется слой сильно завихренного течения с относительно большими значениями энтропии (так называемый энтропийный слой). Возмущения давления распространяются вниз по потоку на расстояния много большие размера затупления и определяются в основном не формой, а сопротивлением затупления. В рамках нестационарной аналогии действие затупления равносильно сильному взрыву (мгновенному выделению энергии) на поверхности поршня в начальный момент его движения (так называемая аналогия с сильным взрывом).

При {{τ}} < < 1 существенными особенностями обладает и структура течения в пограничном слое. Торможение гиперзвукового, внешнего потока внутри пограничного слоя вызывает значительный рост температуры и, как следствие, сильное падение плотности газа. В пределе, когда вне пограничного слоя М{{→∞}}, весь газ протекает в “невязкой” области возмущенного потока, и внешнюю границу слоя можно считать непроницаемой поверхностью. Влияние пограничного слоя на давление аналогично при этом увеличению толщины тела на толщину пограничного слоя и может быть весьма большим. Степень возрастания давления за счёт такого влияния при M{{}} > > 1 и любых значениях τ оценивается параметром K2 = K2(K1 + 1)-2(Re01/2sin2{{τ}})-1. Режимы K2 < < 1, K2~1 и K2 > > 1 носят соответственно названия слабого, умеренного и сильного вязкого взаимодействия. При слабом влиянии разреженности газа (малых Кнудсена числах) и M{{}}{{≈}}1 значение Re0 > > l. Поэтому режимы сильного и умеренного вязкого взаимодействия (K2{{≈}}1) реализуются лишь на тонких телах ({{τ}} < < 1) при условии M{{}} > > 1. Важным свойством течений с сильным или умеренным вязким взаимодействием является передачи возмущений вверх по потоку через дозвуковую часть пограничного слоя на расстояния, сравнимые с длиной тела. По этой причине изменение, например, давления в кормовой части тонкого тела может существенно перестроить всё поле течения без отрыва пограничного слоя.

К термодинамическим особенностям Г. т. относятся несовершенство газа (переменность удельных теплоёмкостей), отклонения от термодинамического равновесия и излучение газа. В частности, для воздуха при температурах T > 1000{{ }}К удельной теплоёмкости уже существенно зависят от температуры, а примерно при T > 2000{{ }}К — и от давления (см. Кинетика физико-химическая). В случае полёта в летательном аппарате в атмосфере Земли такие температуры достигаются на его лобовой поверхности соответственно при M{{}} > 4 и M{{}} > 8. Течения, в которых процессы установления в газе термодинамического равновесия не успевают за темпом изменения внешних воздействий, называются неравновесными. Предельные режимы неравновесных течений, когда указанные процессы практически не успевают развиваться вообще, называют замороженными. Замороженные течения воздуха и при больших температурах не отличаются от течений при T < 1000{{ }}К, то есть соответствуют течению совершенного газа с показателем адиабаты {{γ}} = 1,4. На замороженные течения может оказать сильное влияние разреженность газа (см. Разреженных газов динамика). Эффекты неравновесности растут с уменьшением размеров тела и с увеличением высоты полёта. При движении летательного аппарата типа сферы с характерным размером ~1 м в атмосфере Земли область неравновесных течений для скоростей V{{}} = 3—11 км/с начинается соответственно с высот H {{}} 40—60 км, а область замороженных — определяется высотами H > 70 км. При скоростях V{{}} > 9 км/с все указанные термодинамические эффекты могут сопровождаться интенсивным излучением газа (см. Радиационный тепловой поток). Изменения термодинамических свойств газа при больших температурах могут вызывать значительные изменения аэродинамических и особенно тепловых характеристик тел.

При аэродинамическом проектировании гиперзвуковых летательных аппаратов необходимо удовлетворить широкому комплексу требований не только к его аэродинамическим, но и к тепловым характеристикам. Большое число явлений, сопровождающих полёт летательного аппарата, исключает при этом возможность полного моделирования условий натурного обтекания в аэродинамических установках. Расчётные методы исследования Г. т. приобретают, таким образом, исключительно важное значение.

Лит.: Черный Г. Г., Течения газа с большой сверхзвуковой скоростью, М., 1959; Xейз У. Д., Пробстин Р. Ф., Теория гиперзвуковых течений, пер. с англ., М., 1962; Лунев В. В., Гиперзвуковая аэродинамика, М., 1975.

В. В. Михайлов.

гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) — прямоточный воздушно-реактивный двигатель со сверхзвуковой скоростью потока в камере сгорания. В отличие от прямоточного воздушно-реактивного двигателя со сгоранием топлива в дозвуковом потоке в ГПВРД воздух тормозится в меньшей степени — до скорости, превышающей скорость звука. Степень торможения определяется главным образом условиями достижения максимальной эффективности и существенно зависит от режима работы двигателя и условий полёта — Маха числа M{{}} и высоты полёта. Различают ГПВРД внутреннего и внешнего сгорания. Схематично ГПВРД внутреннего сгорания представляет собой тело с каналом переменный сечения, основные элементы которого (воздухозаборник, камера сгорания и реактивное сопло), выполняя те же функции, что и соответствующие элементы прямоточного воздушно-реактивного двигателя, имеют отличия, связанные со спецификой теплоподвода к сверхзвуковому воздушному потоку (рис. 1). Контуры ГПВРД внешнего сгорания образованы внешней поверхностью летательного аппарата и зоной теплоподвода, возникающей при подаче топлива в обтекающий летательный аппарат сверхзвуковой поток и сгорании топливовоздушной смеси (рис. 2). Сгорание смеси в ГПВРД обоих типов может происходить без сильных скачков уплотнения, переводящих сверхзвуковой поток на входе в сверхзвуковой поток меньшей скорости на выходе из зоны горения (ГПВРД с камерами постоянного сечения при малой степени теплоподвода и ГПВРД с расширяющейся камерой), или с сильными скачками уплотнения перед зоной теплоподвода (ГПВРД со стабилизацией горения на выступающих в поток плохообтекаемых телах или при любых способах стабилизации, но при большой степени теплоподвода). Предельная степень теплоподвода в камере, при которой перед ГПВРД появляется отошедшая ударная волна (или скачок уплотнения) и изменяется режим течения воздуха на входе, зависит от формы камеры сгорания (камера постоянного сечения, расширяющаяся или сужающаяся) и режима полёта. Для расширения диапазона работы ГПВРД без отошедшей волны в сторону меньших М{{}} используется либо расширяющаяся камера, либо комбинированная, состоящая из участка с постоянной площадью поперечного сечения, в котором реализуется теплоподвод с торможением потока до звуковой скорости, и расширяющегося участка, реализующего теплоподвод при М{{}}1. Значительное расширение диапазона работы ГПВРД может быть достигнуто применением так называемых двухрежимных прямоточных воздушно-реактивных двигателей (ДПВРД). работающих в начальном диапазоне М{{}} на режиме дозвукового горения, а при больших М{{}} — на режиме сверхзвукового горения, то есть при подводе теплоты к сверхзвуковому потоку (рис. 3). Переход с одного режима на другой в зависимости от конструкции ДПВРД может происходить автоматически или в результате переключения поясов подачи топлива.

Идеальным термодинамическим циклом ГПВРД является так называем цикл Брайтона с изменением процесса теплоподвода в зависимости от условий протекания процесса сгорания в камере — изобарический процесс в расширяющейся камере и процесс с ростом давления в камерах постоянного сечения и в сужающейся (рис. 4). Действительная работа цикла ГПВРД зависит от скорости полёта, степени и условий теплоподвода, степени торможения воздушного потока и уровня потерь в элементах двигателя.

В ГПВРД могут использоваться жидкие, твёрдые и гибридные топлива. Наибольшая эффективность (коэффициент полезного действия, тяга и т. п.) ГПВРД достигается при гиперзвуковых скоростях полёта (отсюда название). Соответственно и предполагаемая область применения ГПВРД; силовые установки гипёрзвукового летательного аппарата и ракет различного назначения при полётах в атмосфере с М{{}} > 6.

Лит.: Зуев В. С., Макарон В. С., Теория прямоточных и ракетно-прямоточных [авиационных] двигателей. М., 1971; Горение в сверхзвуковом потоке, Новосиб., 1984; Курзинер Р. И., Реактивные двигатели для больших сверхзвуковых скоростей полета. 2 изд., М., 1989.

Р. И. Курзинер.

Рис. 1. Схема ГПВРД внутреннего сгорания несимметричной формы: I — воздухозаборник; II — камера сгорания; III — реактивное сопло.

Рис. 2. Схема ГПВРД внешнего сгорания на летательном аппарате несимметричной формы: 1 — летательный аппарат; 2 — скачки уплотнения; 3 — подача топлива; 4 — зона горения.

Рис. 3. Схема двухрежимного прямоточный воздушно-реактивного двигателя несимметричной формы: I — камера сверхзвукового горения; II — камера дозвукового горения; 1 — скачки уплотнения: 2—5 — пояса подачи топлива в камеру на режиме сверхзвукового горения (2 и 3) и на режиме дозвукового горения (4 и 5); 6 — сечение “запирания” (М = 1 на режиме дозвукового горения).

Рис. 4. Идеальные циклы ГПВРД в p—V-Диаграмме (давление — удельный объём): Hg{{Γ}}CН — цикл с камерой сгорания постоянного сечения; Hg{{Γ}}'—С'—Н — цикл с камерой сгорания постоянного давления; Нg—Г"—С"—H — цикл с сужающейся камерой сгорания.

гиперзвуковой самолет — самолёт, способный летать с гиперзвуковой скоростью. Диапазон скоростей и высот полёта Г. с. занимает промежуточное положение между диапазонами, освоенными сверхзвуковыми самолётами и космическими летательными аппаратами. Идеи создания Г. с. высказывались с 50-х гг. По назначению Г. с. могут быть транспортными (перевозка пассажиров и грузов на дальние расстояния), военными, а также самолетами-разгонщиками авиационных и воздушно-космических систем (первыми ступенями составных летательных аппаратов, сообщающими последующим ступеням часть требуемой скорости и другие начальные условия полёта — высоту, параллакс и др.).

Силовая установка Г. с. должна быть комбинированной, то есть включать в общем случае несколько типов двигателей: газотурбинные (турбореактивные двигатели, турбореактивные двигатели с форсажной камерой и т. п.) и прямоточные (прямоточный воздушно-реактивный двигатель, гиперзвуковой прямоточный воздушно-реактивный двигатель) в различных комбинациях в зависимости от типа Г. с. (например, с использованием турбореактивного двигателя в диапазоне Маха чисел полёта 0 < M{{}} < 3, прямоточный воздушно-реактивный двигатель — при 1,5 < M{{}} < 4—6, гиперзвуковой прямоточный воздушно-реактивный двигатель — при M{{}} > 4—6). Аэродинамическая схема Г. с. должна обеспечивать высокие аэродинамические характеристики, прежде всего при гиперзвуковых скоростях полёта (несущий корпус, крыло малого удлинения и т. д.). Для Г. с. характерна высокая степень интеграции планёра и силовой установки, например, использование носовой части фюзеляжа как элемента воздухозаборника, а хвостовой части — как элемента сопла. В качестве топлива для воздушно-реактивного двигателя Г. с., как правило, рассматривается жидкий водород (реже — другие криогенные топлива), иногда в комбинации с керосином.

В зависимости от сочетания максимальной степени аэродинамического нагревания и его продолжительности конструкция Г. с. может быть теплоизолированной, горячей (см. Горячая конструкция), активно охлаждаемой (см. Охлаждаемая конструкция) или их комбинацией. Важнейшее требование к ней — обеспечение приемлемых весовых характеристик при высокой надёжности и технологичности.

В. В. Скипенко.

гиподинамия (от греческого hyp{{ó}} — под, ниже и d{{ý}}namis — сила) — ограничение двигательной активности человека при снижении силовой нагрузки (в отличие от гипокинезии, наблюдающейся при уменьшении двигательной активности в ограниченном пространстве). Г. характеризуется общим ослаблением организма, понижением физической выносливости, уменьшением мышечной силы, снижением объёма циркулирующей в организме крови. Некоторые проявления гиподинамического синдрома сходны с симптомами, возникающими при длительном пребывании в невесомости, поэтому Г. используется в авиационно-космической медицине в качестве модели невесомости для изучения некоторых психофизиологических реакций организма в условиях длительного космического полёта. В меньшей степени гиподинамические явления могут проявляться у лётного состава, в основном при ограничении физической активности.

гипоксия (от греческого hyp{{ó}} — под, ниже и латинского oxygenium — кислород), кислородное голодание, кислородная недостаточность, — пониженное содержание кислорода в тканях организма.

Различают патологические и физиологические формы Г. К первой относят гипоксические состояния, возникшие как следствие заболеваний, ко второй — Г., развившуюся у здоровых людей при несоответствии количества доставленного к тканям кислорода его потреблению (при интенсивной мышечной работе), а также под влиянием пониженного парциального давления кислорода в газовой среде (например, при пребывании на высоте) или при действии внешних факторов, нарушающих кровообращение (при перегрузках, избыточном внутрилёгочном давлении).

гировертикаль — гироскопический прибор, определяющий углы крена и тангажа летательного аппарата относительно местной вертикали. В Г. используются трёхстепенные астатические гироскопы с маятниковой коррекцией. Разновидностью Г. является авиагоризонт.

Погрешности Г. зависят от скорости коррекции и остаточного уровня возмущающих моментов в опорах так называемого карданова подвеса. Для уменьшения влияния длительно действующих ускорений на точность выдерживания вертикали применяют выключатели коррекции.

гирокомпас — указатель направления истинного (географического) меридиана, предназначенный для определения курса летательного аппарата, а также азимута (пеленга) ориентируемого направления. Преимущества Г. по сравнению с магнитным компасом: указывает направление географического, а не магнитного меридиана; на показания меньше влияют перемещающиеся металлические массы и электромагнитные поля; выше точность. Принцип действия Г. основан на использовании свойств гироскопа и суточного вращения Земли.

гироскоп (от греческого gyr{{é}}u{{ō}} — źружусь, вращаю и scopeo — смотрю, наблюдаю) — устройство для измерения параметров углового движения. Широко используется в инерциальных системах навигации, автопилотах, гирокомпасах, гировертикалях и других приборах и системах летательного аппарата. Различают так называем классические Г., лазерные, вибрационные.

Принцип действия классического Г. основан на стремлении быстровращающегося ротора сохранять направление оси вращения в пространстве. Ротор устанавливают в рамках (кольцах) карданова подвеса (рис. 1), позволяющего оси ротора занимать любое положение. Если к какой-либо оси Г. прикладывается внешний момент, то возникает прецессия (движение) Г. с постоянной угловой скоростью. В момент окончания действия внешней силы происходит мгновенное прекращение прецессии. Указанными свойствами обладают астатические трёхстепенные свободные Г. (центр тяжести ротора совпадает с точкой пересечения осей карданова подвеса), динамически настраиваемые Г., а также Г., работающие на новых принципах (электростатические, электромагнитные, криогенные).

У двухстепенных Г. ротор закреплён в одной рамке. При вращении основания (платформы) такого Г. возникает гироскопический момент, стремящийся кратчайшим путём установить ось ротора параллельно оси, относительно которой вращается основание. Двухстепенные Г. используются в указателях поворота и некоторых гиростабилизаторах.

В лазерном Г. (рис. 2) применяется оптический квантовый генератор и имеется плоский замкнутый контур (образован тремя и более зеркалами), где циркулируют два встречных световых потока (луча), частоты которых из-за эффекта Доплера различны. Разность этих частот пропорциональна угловой скорости основания.

Вибрационные Г. в качестве чувствительного элемента содержат вибрирующие массы (например, ротор с упругим подвесом или упругие пластины); служат для определения угловой скорости.

В. В. Тимофеев.

Рис. 1. Трёхстепенной гироскоп в кардановом подвесе: 1 — внутренняя рамка; 2 — наружная рамка; 3 — ротор.

Рис. 2. Схема лазерного гироскопа: 1 — активная среда; 2 — блоки питания; 3 — измеритель; А, В, С — зеркала.

гироскопическая нагрузка — нагрузка, возникающая из-за взаимодействия вращения элемента какой-либо системы летательного аппарата с вращением летательного аппарата как целого. Наибольшие Г. н. наблюдаются в силовой установке летательного аппарата, и их необходимо учитывать в инженерных расчётах. Численно Г. н. характеризуется гироскопическим моментом М. У самолёта максимальная Г. н. возникают обычно при его вращении относительно поперечной оси (манёвр в вертикальной плоскости). В этом случае M = Jx{{ω}}x{{Ω}}z, где Jx, и {{ω}}x — соответственно момент инерции и угловая скорость элемента силовой установки (например, воздушного винта, ротора газотурбинного двигателя) относительно продольной оси самолёта, {{Ω}}z — угловая скорость самолёта относительно его поперечной оси.

гиростабилизация — поддержание с помощью гироскопов и гироскопических устройств параметров углового движения элементов системы управления летательным аппаратом и самих летательных аппаратов в условиях возмущений. Различают Г. силовую, индикаторную и индикаторно-силовую. Силовая Г. заключается в парировании внешних возмущающих моментов, действующих на стабилизируемый элемент (платформу) прибора или системы, гироскопическими моментами, возникающими в результате прецессии гироскопов. (Возможен также вариант бесплатформных навигационных систем, в которых чувствительные элементы, в том числе и гироскопы, устанавливаются непосредственно на борт летательного аппарата, а сам летательный аппарат играет роль стабилизирующей платформы). В основе индикаторной Г. лежит использование гироскопов в качестве измерителей рассогласования между заданным и действительным положениями стабилизируемого элемента; парирование возмущений осуществляется исполнительными органами следящих систем. Индикаторно-силовая Г. включает элементы силовой и индикаторной стабилизации. Г. используется в системах ориентации, самонаведения, прицельно-навигационных системах, инерциальных навигационных системах и инерциальных системах управления. Г. достигается с помощью различных устройств. Например, в системах самонаведения Г. осуществляется гироскопическими приводами головок самонаведения, в инерциальных навигационных системах — трехосными гироплатформами, в инерциальных системах управления — либо трёхосными гироплатформами, либо блоком астатических гироскопов.

Лит: Гироскопические системы, ч. 1, М., 1971; Неусыпин А. К., Гироскопические приводы, М., 1978.

А. К. Неусыпин.

Рис. 1. Зависимость cy от α при прямом (1) и обратном (2) изменениях {{α}} при различных значениях Re а — Re = 1,08*106; б — Re = 2,36*106; в — Re = 3,46*106; г — Re = 4,28*106; cymax — максимальное значение cy при обратном ходе.

Рис. 2. Экспериментальные зависимости (модель самолёта с крылом большого удлинения) cy и аэродинамического коэффициента момента тангажа m{{x}}, и приведённой скорости тангажа {{ω}}x, [в данном случае {{ω}}x = {{α}} = (d{{α}}/dt)(bA/V{{}})] от {{α}} для колеблющегося крыла (прямой ход — голубые кривые, обратный —чёрные кривые) и крыла в стационарном режиме (красные кривые); bA — средняя аэродинамическая хорда. V{{}} — скорость полета.

гистерезис (от греческого hyst{{é}}r{{ē}}sis — īтставание, запаздывание) — 1) Г. в аэродинамике — неоднозначность структуры поля течения и, следовательно, аэродинамических характеристик обтекаемого тела при одних и тех же значениях кинематических параметров, но при различных направлениях их изменения (например, при увеличении или уменьшении угла атаки {{α}}, Маха числа). Г. проявляется в большей или меньшей степени в зависимости от Рейнольдса числа Re, формы профиля крыла, его относительной толщины {{с}}и т. п. и связан в основном с неоднозначностью структуры обтекающего потока при равных значениях, но разных направлениях изменения параметра — увеличения (прямой ход) или уменьшения (обратный ход).

Впервые аэродинамический Г. описан в 1931 английским исследователем Э. М. Джейкобсом (Jacobs) при анализе экспериментальной зависимости коэффициента подъёмной силы cy (см. Аэродинамические коэффициенты) профиля от угла атаки. Дальнейшие экспериментальные исследования показали, что при ламинарном обтекании крыла большого удлинения ({{λ≥}}5,0) гистерезисные петли могут возникать при сравнительно малых значениях Re{{}}0,22*106. Это особенно заметно у толстых крыльев ({{c}} = 18—24%), у которых наблюдается срыв потока с носовой части. Диапазон значении {{α}}, соответствующий неоднозначной структуре обтекания крыла, расширяется с увеличением относительной толщины профиля. При значениях Re > 0,8*106 такой тип отрыва потока исчезает в связи с переходом ламинарного течения в турбулентное. На рис. 1 приведены результаты испытаний крыла с удлинением {{λ}} = 5,0 в аэродинамической трубе. В области критических углов атаки происходит резкое уменьшение cy. При Re = l*106 Г. отсутствует; при Re > 2*106 отчётливо видна гистерезисная петля, причём расхождение значений cy при заданном α при прямом и обратном ходах увеличивается с увеличением значения Re.

При неустановившемся движении летательного аппарата в зависимости от аэродинамических сил и моментов проявляется так называемый динамический Г. Например, такой Г. имеет место при колебаниях угла атаки профиля (или крыла) около значений {{α}}отр или {{α}}1, соответствующих отрыву потока или началу разрушения устойчивой вихревой структуры над несущей поверхностью (см. Крыла теория) при стационарном обтекании (рис. 2). При этом с ростом скорости тангажа {{ω}}z, и увеличением заброса угла атаки {{α}}забр при {{α}}забр > {{α}}отр или {{α}}1 происходит существенное расширение гистерезисных петель в зависимостях интегральных аэродинамических характеристик от угла атаки. Это связано со смещением на большие углы атаки режима безотрывного обтекания при положительном значении {{ω}}z, а также с видоизменением отрывного течения на профиле или крыле большого удлинения и трансформацией вихревой структуры для треугольного крыла или крыла с наплывом на больших углах атаки при неустановившемся движении.

2) Г. в системе управления — неоднозначность зависимости выходного перемещения системы управления от входного сигнала при его медленном изменении в прямом и обратном направлениях. Обычными причинами Г. являются люфты, трение и упругие деформации в элементах системы управления, зоны нечувствительности в рулевых машинках и рулевых приводах. Г., как правило, приводит к ухудшению характеристик устойчивости и управляемости летательного аппарат и может явиться причиной его автоколебаний. Допустимые размеры Г. определяются требованиями к точности пилотирования летательного аппарата.

Ю. Г. Живов, Г. И. Столяров.

Гласс Теодор Генрихович (1903—1940) — советский, учёный в области аэродинамики, профессор (1937). Окончил Московский государственный университет (1930). Работал в Центральном аэрогидродинамическом институте (1926—1940). Автор раздела “Распределение аэродинамической нагрузки по крылу” в Нормах прочности самолётов (1937). Основные работы по изучению профильного сопротивления крыльев и созданию серий профилей с высокими аэродинамическими характеристиками. Портрет смотри на стр. 171.

Т. Г. Гласс.

Глауэрт (Glauert) Герман (1892—1934) — английский учёный в области аэродинамики, устойчивости и управляемости летательного аппарата. Член Лондонского королевского общества (с 1931). Окончил Кембриджский университет. С 1916 на Королевском самолётостроительном заводе (ныне Королевский авиационный научно-исследовательский институт). Один из создателей вихревых теорий крыла конечного размаха при малых скоростях (Прандтля — Глауэрта теория) и воздушного винта, разработал линеаризованную теорию профиля в дозвуковом потоке (правило Прандтля — Глауэрта).

Соч.: Основы теории крыльев и винта, пер. с англ., М.—Л., 1931.

Глинка Дмитрий Борисович (1917—1979) — советский лётчик, полковник, дважды Герой Советского Союза (дважды 1943). В Советской Армии с 1937. Окончил военную авиационную школу (1939), Военно-воздушную академию (1951; ныне имени Ю. А. Гагарина). Участник Великой Отечественной войны. В ходе войны был командиром звена, начальником воздушно-стрелковой службы истребительного авиаполка. Совершил около 300 боевых вылетов, сбил 50 самолётов противника. После войны командир полка, заместитель командира истребительной авиадивизии. Депутат Верховного Совета СССР в 1946—1950. Награждён орденом Ленина, 5 орденами Красного Знамени, орденами Александра Невского, Отечественной войны 1-й степени, 2 орденами Красной Звезды, медалями. Бронзовый бюст в г. Кривом Роге.

Лит.: Герои битвы за Кавказ, Цхинвали, 1975.

Д. Б. Глинка.

глиссада (французское glissade, буквально — скольжение) — 1) прямолинейная траектория движения летательного аппарата под углом к горизонтальной плоскости.

2) Прямолинейная траектория, по которой должно осуществляться снижение самолёта в процессе захода на посадку. Номинальное значение угла наклона Г. к горизонтальной плоскости составляет 0,046 рад, в исключительных случаях угол наклона Г. может доходить до 0,087 рад. На аэродромах Г. задаётся при помощи глиссадного (ГРМ) и курсового (КРМ) радиомаяков, входящих в состав аэродромного оборудования. Г. образуется пересечением в пространстве двух равносигнальных зон ГРМ и КРМ. Высота равносигнальной зоны ГРМ над торцом взлётно-посадочной полосы составляет 15 м. Движение самолёта по Г. начинается на высоте 200—400 м и заканчивается манёвром выравнивания или уходом на второй круг, если отклонение от Г. превысило допустимое.

глиссирование гидросамолёта — скольжение гидросамолёта по воде при разбеге перед отрывом или при пробеге после приводнения, когда скорость движения достаточно велика. При Г. г. и смачиваемая поверхность корпуса гидросамолёта, и возмущение воды, вызванное движением гидросамолёта, существенно меньше, чем при “нормальном” плавании с той же скоростью; соответственно уменьшаются и затраты энергии на преодоление сопротивления воды движению летательного аппарата. Подъёмная сила гидросамолёта, позволяющая реализовать режим глиссирования, является суммой аэродинамической подъёмной силы крыла и динамической реакции воды. Чтобы обеспечить Г. г., днище гидросамолёта выполняется (см. рис.) с реданом и скулами. Такая форма днища способствует срыву струй на режиме глиссирования, вследствие чего уменьшаются смачиваемая поверхность корпуса и сила трения о воду. Для уменьшения ударных нагрузок при глиссировании по неспокойной воде днищу гидросамолёта придаётся некоторая поперечная килеватость.

Схема днища гидросамолёта: а — плоское днище; б — днище с килеватостью; 1 — редан; 2 — скула.

“Глостер” (Gloster Aircraft Co., Ltd) — самолётостроительная фирма Великобритании. Основана в 1915, в 1934 стала дочерней компанией фирмы “Хокер”, вместе с которой в 1935 вошла в состав концерна “Хокер Сидли”. В 1963 утратила статус компании и название. До Второй мировой войны выпускала главным образом истребители-бипланы, в том числе “Гриб” (первый полёт в 1923), “Геймкок” (1924), “Гонтлет” (1933), “Гладиатор” (1934, выпущено 747). В 1941 построила первый реактивный самолёт Великобритании Е.28/39 (см. рис.). В 1943 создала реактивный истребитель “Метеор” (на вооружении военно-воздушных сил Великобритании с 1944, построено 3550, см. рис. в таблице XIX). В 1951 создала всепогодный реактивный истребитель “Джевлин” (выпущено около 400, см. рис. в таблице XXXI). Основные данные некоторых самолётов фирмы приведены в таблице.

Табл. — Истребители фирмы “Глостер”

Основные данные

“Гладиатор” II

“Метеор” F.Mk.4

“Джевлни” F(AW).4

Первый полёт, год

1938

1945

1955

Число и тип двигателей

1 ПД

2 ТРД

2 ТРД

Мощность двигателя, кВт

626

-

-

Тяга двигателя, кН

-

15,6

59,6

Длина самолёта, м

8,36

13,6

17,3

Высота самолёта, н

3,16

3,96

4,88

Размах крыла, м

9,83

11,33

15,85

Площадь крыла, м2

30

32,51

87,5

Взлётная масса, т:

 

 

 

 

 

 

нормальная

-

6,88

15,9

максимальная

2,16

8,48

19,47

Масса пустого самолёта, т

1,56

4,56

-

Боевая нагрузка, т

-

1,24

1,8

Максимальная дальность полита, км

660

1610

1500

Максимальная скорость полёта, км/ч

400

940

1000

Потолок, м

10000

14335

15000

Экипаж, чел.

1

I

1

Вооружение

4 пулемёта

4 пушки (20 мм);

НАР

4 пушки (30 мм):НАР, 4 УР

 

Глушко Валентин Петрович (1908—1989) — советский учёный в области ракетно-космической техники, один из основателей советской космонавтики, академик АН СССР (1958; член-корреспондент с 1953), дважды Герой Социалистического Труда (1956, 1961). После окончания Ленинградского университета (1929) работал в Газодинамической лаборатории (1929—1933), Реактивном научно-исследовательском институте (1934—1938). Был необоснованно репрессирован и в 1937—1944 находился в заключении, работая в особом КБ НКВД по созданию жидкостного ракетного двигателя. С 1941 главный конструктор, с 1974 генеральный конструктор. Создал ряд экспериментальных жидкостных ракетных двигателей, которые устанавливались на самолётах Пе-2, Ла-7, Як-3, Су-6, а также жидкостный ракетный двигатель для ракет различного назначения. Основные работы посвящены теоретическим и экспериментальным исследованиям по важнейшим вопросам создания и развития жидкостных ракетных двигателей и космических аппаратов. Руководитель разработки ракетно-космической системы “Энергия” — “Буран”. Депутат Верховного Совета СССР с 1966. Золотая медаль имени К. Э. Циолковского АН СССР (1958), диплом имени П. Тиссандье (ФАИ). Ленинская премия (1957), Государственная премия СССР (1967, 1984). Награждён 5 орденами Ленина, орденами Октябрьской Революции, Трудового Красного Знамена, медалями. Бронзовый бюст в Одессе.

Соч.: Путь в ракетной технике, Избранные труды 1924—1946, М., 1977.

Лит.: Романов А. П., Губарев В. С., Конструкторы, М., 1989.

В. П. Глушко.

Годар (Godard) Эжен (1827—1990) — французский воздухоплаватель и конструктор аэростатов. Совершил свыше 2500 полётов на свободных аэростатах, для наполнения которых использовались светильный газ, водород и тёплый воздух. Разрабатывал и строил аэростаты с 1846. В 1863 построил водородный аэростат объёмом 6000 м3 (“Гигант”) для полёта 40 человек В том же году построил самый большой для того времени аэростат объёмом 14 тысяч м3. Во время осады Парижа немцами (1870—1971) совместно с братом Луи (1829—1885) и механиком Г. Ионом открыл мастерскую для постройки свободных аэростатов, использовавшихся для воздушной связи Парижа со свободной территорией Франции. За 4 месяца осады было построено 64 аэростата. В дальнейшем братья Годар совместно с Ионом руководили мастерскими по изготовлению аэростатов для французской армии. В 1875 Г. на свободном аэростате впервые перелетел через Пиренейские горы из Франции в Испанию.

годографа метод (от греческого hod{{ó}}s — путь, движение, направление и gr{{á}}pho — пишу) в аэродинамике — метод исследования и расчёта плоских безвихревых течений сжимаемого газа, основанный на том, что система уравнений для потенциала скорости {{φ}} и функции тока {{ψ}}, нелинейная в физической плоскости (х, у), становится линейной при переходе к плоскости переменных (u, v) — плоскости годографа скорости (здесь u, v — проекции вектора скорости на оси x, y прямоугольной системы координат). Это возможно ввиду того, что коэффициент исходных уравнений зависят лишь от скорости. Основы метода, использующего преобразование в плоскость годографа, даны С. А. Чаплыгиным в 1902. Система линейных уравнений для {{φ}} и {{ψ}} преобразуется к каноническому виду (Л. С. Лейбензон, 1935):

{{формула}}

где

{{формула}}

{{формула}}

{{α}} — критическая скорость; {{γ}} — показатель адиабаты.

Представление течения уравнениями в плоскости годографа особенно удобно в задачах с относительно простыми граничными условиями. Такие условия имеют место для течений, на границах которых либо направление скорости, либо её модуль сохраняют постоянное значение; это позволяет сразу построить область течения в плоскости годографа. К этому классу задач относится, например, задача об истечении газовой струи (см. рис.), для которой точное решение уравнений в плоскости годографа строится в виде ряда по совокупности частных решений, найденных методом разделения переменных.

Однако в общем случае расчёт обтекания тел связан с принципиальными трудностями, поскольку точные граничные условия в плоскости годографа неизвестны. В связи с этим широко применяется следующий приближённый метод: в канонических уравнениях коэффициент К принимается равным единице, что выполняется с той или иной степенью точности для произвольного газа при скоростях, не слишком близких к скорости звука, и строго — для так называемого газа Чаплыгина (газа с линейной связью между давлением и удельным объёмом, то есть с {{γ}} = -1). В результате эти уравнения приводятся к так называемым уравнениям Коши — Римана для действительной и мнимой частей аналитической функции комплексного переменного. На основе такого подхода с помощью метода конформных преобразований удаётся решить задачу о циркуляции обтекании профиля дозвуковым потоком газа. Кроме того, разработан ряд приближённых истодов учёта влияния сжимаемости газа на распределение давления по профилю в дозвуковом потоке, не требующих полного решения задачи, а использующих данные о распределении давления в потоке несжимаемой жидкости (методы С. А. Христиановнча, Кармана — Тзяна и др.). Они позволяют вводить поправку на сжимаемость в несколько более широких диапазонах углов атаки, относительных толщин профиля и Маха чисел, чем линейная Прандтля — Глауэрта теория.

При околозвуковом обтекании тонкого профиля линейные уравнения в плоскости годографа дополнительно упрощаются в рамках теории малых возмущений и сводятся к так называемому уравнению Трикоми (итальянский математик, F. Tricomi), которое описывает течение с местными сверхзвуковыми зонами.

Лит.: Чаплыгин С. А., Собр. соч., т. 2, М.—Л., 1948; Гудерлей К. Г., Теория околозвуковых течений, пер. с нем., М., 1980; Седов Л. И., Плоские задачи гидродинамики и аэродинамики, 3 изд., М., 1980; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987.

В. Н. Голубкин.

Истечение струи в свободное пространство (а) и соответствующая картина в плоскости годографа (б): АВ — стенка; 1 — ось струи; 2 — годографы скоростей для различных линий тока; 3 — линия тока на границе струи; 4 — линия, на которой скорость частиц равна скорости звука.

Годунов Константин Дмитриевич (1892—1965) — советский воздухоплаватель, конструктор аэростатов. В 1911—1914 учился в Петербургском политехническом институте. Участник Первой мировой войны. Окончил Академию Воздушного Флота имени профессора Н. Е. Жуковского (1925; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского). Работал в Высшей военной воздухоплавательной школе Военно-воздушных сил (в Ленинграде), Военно-воздушной инженерной академии имени профессора Н. Е. Жуковского и научно-исследовательском институте военно-воздушных сил. В 1932—1933 возглавлял ОКБ резиновой промышленности по постройке стратостата “СССР-1” (конструктор оболочки стратостата), 30 сентября 1933 совершил полёт на этом стратостате совместно с Г. А. Прокофьевым и Э. К. Бирнбаумом (достигнута высота 19 км). Разработал ряд привязных и свободных аэростатов и летал на них. Аэростаты заграждения конструкции Г. применялись в противовоздушной обороне во время Великой Отечественной войны. Награждён орденами Ленина, Трудового Красного Знамени.

Голованов Александр Евгеньевич (1904—1975) — советский военачальник, главный маршал авиации (1944). В Советской Армии с 1919. Окончил лётную школу при Центральном аэрогидродинамическом институте (1932), Высшую военную академию (1950; позже Военная академия Генштаба Вооруженных Сил СССР). Участник Гражданской войны, боёв в районе р. Халхин-Гол, советско-финляндской войны. В ходе Великой Отечественной войны был командиром дальней бомбардировочной авиационной дивизии, командующим авиацией дальнего действия, командующим воздушной армией. После войны на командных должностях в Военно-воздушных силах. Депутат Верховного Совета СССР в 1946—1950. Награждён 2 орденами Ленина, 3 орденами Красного Знамени, 3 орденами Суворова 1-й степени, орденом Красной Звезды, медалями, а также иностранными орденами.

Лит.: Идашкин Ю. В., Небо его мечты, М., 1986.

Головачев Павел Яковлевич (1917—1972) — советский лётчик, генерал-майор авиации (1957), дважды Герой Советского Союза (1943, 1945). В советской Армии с 1938. Окончил Одесскую военную авиационную школу (1940), Военно-воздушная академию (1951; ныне имени Ю. А. Гагарина), Военную академию Генштаба Вооруженных Сил СССР (1959). Участник Великой Отечественной войны. В ходе войны был лётчиком, командиром звена, командиром эскадрильи истребительного авиаполка. Совершил свыше 450 боевых вылетов, сбил 26 самолётов противника. После войны на командных должностях в Военно-воздушных силах. Награждён 2 орденами Ленина, 6 орденами Красного Знамени, орденом Отечественной войны 1-й степени, 2 орденами Красной Звезды, медалями. Бронзовый бюст в деревне Кошелево Гомельской области.

П. Я. Головачёв.

Головин Павел Георгиевич (1909—1940) — советский полярный лётчик, полковник, Герой Советского Союза (1937). Окончил лётную школу Осоавиахима в Тушине (1930), работал в ней инструктором. С 1934 в полярной авиации. Участвовал в ледовой разведке и проводке судов в Арктике, в высадке первой советской полярной экспедиции И. Д. Папанина (5 мая 1937 экипаж Г. на самолёте АНТ-7 при выполнении ледовой разведки первым из лётной группы пролетел над Северным полюсом) , в поисках пропавшего самолёта С. А. Леваневского (1937—1938). С 1939 на испытательной работе. Погиб при испытании самолёта. Награждён орденами Ленина, Красного Знамени, Красной Звезды, медалью.

П. Г. Головин.

Для дальнейшего чтения нажмите кнопку