класс пассажирского салона. В зависимости от уровня комфорта и обслуживания пассажиров, оформления интерьера, класса пассажирских кресел и шага их установки различают салоны первого, туристского, экономического классов и так называемого бизнес-класса. Для салонов первого класса характерны высокий уровень комфорта и обслуживания пассажиров, цветового оформления и декоративной отделки интерьера, возможно большее пространство для размещения пассажиров в комфортабельных креслах. Салоны туристского класса имеют более низкий уровень комфорта из-за уменьшения размеров кресел, увеличения плотности их установки, упрощения обслуживания. Однако салоны туристского класса должны обеспечивать неутомительное пребывание в них пассажиров при полётах большой продолжительности. Салоны экономического класса характеризуются приемлемым для заданной продолжительности полёта уровнем комфорта и обслуживания пассажиров, а также уменьшением размеров кресел и шага их установки. Они используются в самолётах, рассчитанных на малую и среднюю дальности полетов. Салоны бизнес-класса приобрели широкую популярность за рубежом в конце 70-х — начале 80-х гг. Авиакомпании стремятся привлечь “деловых” пассажиров предоставлением им достаточно высокого уровня комфорта и обслуживания, созданием условий для полноценного отдыха и работы во время полёта за меньшую по сравнению с салонами первого класса цену.

классификация летательных аппаратов ФАИ. В соответствии сос спортивным кодексом Международной авиационной федерации летательные аппараты делятся на классы. Класс A — свободные аэростаты; имеет подклассы в зависимости от объёма и наполнителя (газ, смешанный газ, тёплый воздух). Класс B — дирижабли. Класс C — самолёты, гидросамолёты, самолёты-амфибии; подразделяется на подклассы в зависимости от взлётной массы. В каждом из подклассов класса C летательные аппараты делятся на 4 группы (по силовым установкам): с поршневым двигателем, турбовинтовым двигателем, турбореактивным двигателем, реактивным двигателем. Класс D — планеры, планеры с мотором. Класс E — винтокрылые летательные аппараты (вертолёты, конвертопланы, автожиры); подразделяется на подклассы в зависимости от взлётной массы. Класс F — модели летательных аппаратов (свободнолетающие, кордовые и радиоуправляемые модели, модели-копии), Класс G — парашюты. Класс H — летательные аппараты с реактивной подъёмной силой. Класс I — летательные аппараты с мускульным движителем; имеет подклассы: вертолёты, самолёты. Класс K — космические корабли. Класс L — летательные аппараты с предельной высотой полёта (на воздушной или магнитной подушке). Класс M — летательные аппараты с поворотом крыла или поворотом двигателя. Класс N — летательные аппараты короткого взлёта и посадки. Класс O — безмоторные летательные аппараты (дельтапланы), Класс P — воздушно-космические летательные аппараты. Класс R — сверхлёгкие самолёты (сухая масса не более 150 кг). Класс S — космические модели. Данная классификация летательных аппаратов, признанная Международной авиационной федерацией, является обязательной для всех спортивных состязаний и регистрации рекордов.

С. И. Харламов.

классификация массы летательного аппарата — объединение масс элементов летательного аппарата в группы и подгруппы по какому-либо устойчивому признаку с целью сравнения весовых характеристик летательного аппарата. В существующих К. м. таким признаком является функциональное назначение. К. м. летательного аппарата устанавливаются нормативно-техническими документами, согласованными ведомством-изготовителем летательного аппарата и ведомством-заказчиком. Так, в России К. м. пассажирских самолётов установлена соответствующим отраслевым стандартом, содержащим перечень составляющих массы самолёта и элементов, входящих в эти составляющие. Принцип взаимосвязи основных составляющих массы пассажирских самолётов приведён на рис. Использование стандартизированной К. м. позволяет проводить анализ весовых характеристик летательного аппарата в сопоставимых условиях, повысить достоверность статистических данных о весовых характеристиках, способствуя повышению достоверности прогноза массы летательного аппарата при проведении весового расчёта летательного аппарата.

Лит.: Шейнин В. М., Козловский В. И., Весовое проектирование и эффективность пассажирских самолетов, 2 изд., М., 1984.

классы самолётов и вертолетов. Все гражданские самолёты и вертолёты в России группируют по классам в зависимости от их взлётной массы:

Класс

Взлетная масса, т

самолётов

вертолётов

Первый

75 и более

20 и более

Второй

30—75

10—20

Третий

10—30

До 10

Четвёртый

До 10

Отдельным воздушным судам гражданской авиации с учётом их скорости, рабочих высот, дальности полёта и характеристик бортового оборудования могут присваиваться повышенные классы.

клеи в авиастроении. По происхождению К. классифицируют на природные (животные, растительные, ископаемые) и синтетические, которые, в свою очередь, подразделяются на термопластичные и термореактивные. В авиастроении применяются только синтетические К.

Термопластичные К. — многокомпонентные системы на основе термопластичных полимеров; выпускаются в виде растворов, порошков, прутков, плёнок. Клеевые швы, образуемые термопластичными К., характеризуются невысокой прочностью, хладотекучестыо, низкой теплостойкостью, в связи с чем эти К. не пригодны для склеивания несущих конструкций. В авиастроении они используются главным образом для приклеивания декоративно-облицовочных материалов, деталей интерьера самолёта, для склеивания пластмасс.

Термореактивные К. — многокомпонентные системы на основе термореактивных полимеров; выпускаются в виде растворов и эмульсий в органических растворителях, жидких и пастообразных композиций (не содержащих растворитель), плёнок и порошков. К. могут содержать различные наполнители (порошки металлов, мелкодисперсный асбест и т. п.). Наибольшее распространение нашли термореактивные К. на основе эпоксидных и фенольных смол, а также гетероароматических полимеров (полиимидов, полибензимидазолов и др.). Склеивание термореактивными К. осуществляется при обычной температуре (К. холодного отверждения) или при нагревании (К. горячего отверждения). Последние имеют более высокие прочностные характеристики, тепло-, водо-, тропико- и химическую стойкость, повышенную эластичность; такие К. называются конструкционными.

Сочетание клеевых соединений с механическим подкреплением болтами, заклёпками, сварными точками позволяет получать комбинированные соединения, обладающие комплексом свойств, присущих клеевым, и в то же время способные передавать сосредоточенные нагрузки. С помощью К. получают сотовые конструкции из металлов и неметаллических материалов (стекло-, угле-, органопластиков) и слоистые (2 слоя и более) металлические конструкции, позволяющие создавать авиационные конструкции с повышенной жёсткостью, несущей способностью, стойкостью к развитию усталостных трещин и при этом снижать их массу на 5—30%. Клеевые соединения — практически единственный эффективный метод соединения стекло-, угле-, органопластиков в авиационной технике.

В отечественной и зарубежной практике с применением К. изготовляют элементы механизации крыла (закрылки, тормозные щитки, спойлеры и др.), передние и задние панели крыла, киль, стабилизатор, рули управления, слоистые конструкции крыла и фюзеляжа. Кроме того, К. используются при отделке интерьера пассажирского салона самолётов. В широкофюзеляжных пассажирских и транспортных самолётах площадь силовых клеевых соединений достигает 3—5 тысяч м3, а вместе с несиловыми — 6—7 тысяч м3.

Лит.: Кардашов Д. А., Синтетические клеи, 3 изд., М., 1976; его же, Конструкционные клен М., 1980; Крысин В. Н., Слоистые клеевые конструкции в самолетостроении, М.; 1980.

климатические испытания авиационного оборудования — проводятся с целью проверки работоспособности оборудования или состояния его элементов в процессе и (или) после воздействия на них климатических факторов. Последние подразделяются на факторы, существующие в любом полёте (изменение температуры, давления, влажности воздуха и, как следствие, образование на элементах оборудования конденсата, инея или льда), и факторы, зависящие от климатических условий предполагаемых мест базирования летательных аппаратов (мор, туман, пыль, песок, грибковая плесень и др.).

На некоторые элементы и виды оборудования может воздействовать солнечная радиация.

К. и. проводятся обычно в камерах с применением ускоренных методов, моделирующих в лабораторных условиях длительные процессы воздействия соответствующих факторов в натурных условиях. Ускорение испытаний достигается повышением уровня воздействующих факторов (температуры, концентрации), количества циклов испытаний. Различный уровень факторов задаётся также в зависимости от того, для каких условий эксплуатации предназначается блок (агрегат) оборудования — в кондиционируемом или некондиционируемом отсеке, в закрытой полости или в непосредственном контакте с внешним воздухом.

Виды К. и., которым должно подвергаться то или иное оборудование, зависят от предполагаемых условий эксплуатации и конструкции блоков (агрегатов) и обычно указываются в технических требованиях на оборудование. Задаваемые при испытаниях нормы воздействующих факторов и методики испытаний регламентируются нормативно-техническими документами.

Климов Владимир Яковлевич (1892—1962) — советский конструктор авиационных двигателей, академик АН СССР (1953; член-корреспондент 1943), генерал-майор инженерно-авиационной службы (1944), дважды Герой Социалистического Труда (1940, 1957). Окончил Московское высшее техническое училище (1918). Начальник отдела авиационных двигателей Высшего совета народного хозяйства (1918—1924), председатель комиссий по закупке лицензий на иностранные двигатели Берлинского и Парижского торгпредств СССР (1924—1935). В 1920—1933 преподавал в Московском высшем техническом училище, Академии Воздушного Флота имени профессора Н. Е. Жуковского (ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского), Московском авиационном институте. С 1930 работал в авиационной промышленности. В 1931—1933 начальник отдела Центрального института авиационного моторостроения. С 1935 главный конструктор авиамоторного завода №26 в Рыбинске и (после эвакуации) в Уфе. В 1946 возглавил ОКБ в Ленинграде, одновременно в 1947—1956 руководил ОКБ-45 в Москве. С 1956 генеральный конструктор. Под руководством К. создан ряд авиационных двигателей для истребительной авиации и скоростных бомбардировщиков. Поршневые двигатели К. устанавливались на самолётах А. Н. Туполева, В. М. Петлякова, С. А. Лавочкина, А. С. Яковлева. В послевоенный период под руководством К. разработан ряд воздушно-реактивных двигателей для самолётов Лавочкина, А. И. Микояна, С. В. Ильюшина и А. Н. Туполева. Основные труды по исследованию внутреннего процесса и динамике авиационных двигателей, расчёту на прочность отдельных элементов двигателя. Имя К. носит научно-производственное объединение в Санкт-Петербурге (см. Ленинградское научно-производственное объединение). Депутат Верховного Совета СССР в 1946—1950 Государственная премия СССР (1941, 1943, 1946, 1949). Награждён 5 орденами Ленина, орденами Суворова 1-й и 2-й степени, Отечественной войны 1-й степени, Трудового Красного Знамени, медалями. Бронзовый бюст в Москве. См. ст. ВК. Портрет смотри на стр. 275.

Лит.: Пономарев А. Н., Советские авиационные конструкторы, 2 изд., М., 1980.

В. Я. Климов.

“КЛМ” (KLM, Koninklijke Luchtvaart Maatschappij NV) — национальные авиакомпания Нидерландов. Осуществляет перевозки в страны Европы, Америки, Азии, Африки, а также в Австралию. Основана в 1920, одна из старейших в мире. В 1989 перевезла 7,2 миллионов пассажиров, пассажирооборот 24,96 миллиардов пассажиро-км. Авиационный парк — 78 самолетов.

Клубов Александр Фёдорович (1918—1944) — советский лётчик, капитан, дважды Герой Советского Союза (1944, 1945, посмертно). В Красной Армии с 1939. Окончил Чугуевское военное авиационное училище (1940). Участник Великой Отечественной войны. В ходе войны был лётчиком-истребителем, командиром звена, командиром эскадрильи. Совершил 457 боевых вылетов, сбил лично 31 и в составе группы 19 самолётов противника. Погиб при катастрофе самолета на прифронтовом аэродроме. Награждён орденом Ленина, 2 орденами Красного Знамени, орденами Александра Невского, Отечественной войны 1-й степени, медалями. Бронзовый бюст в деревне Яруново Вологодской области.

А. Ф. Клубов.

Кнудсена число [по имени датского физика и океанографа М. X. К. Кнудсена (M. Н. Ch. Knudsen)] — безразмерный параметр Kn, равный отношению средней длины {{λ}} свободного пробега молекул газа к характерному линейному размеру L течения, Kn = {{λ}}/L. К. ч. — основной критерий подобия в разреженных газов динамике, характеризующий степени влияния разреженности газа, соотношение между процессами взаимодействий молекул газа между собой и с обтекаемой поверхностью и режим течения (например, свободномолекулярному течению соответствует Kn{{→∞}}, а течению сплошной среды — Kn{{}}0). Так как {{λ ≈ μ}}/{{ρ}}a, то Kn {{}} M/Re ({{μ}} — динамическая вязкость, {{ρ}} — плотность, a — скорость звука, M и Re — соответственно Маха число и Рейнольдса число).

Коандэ (Coand{{ă}}) Ŕнри (1886—1972) — румынский учёный и конструктор, автор многих изобретений в различных областях техники. Авиацией увлёкся во время учёбы в артиллерийский школе. Переехал во Францию и в 1910 окончил Высшую школу аэронавтики и механических конструкций в Париже. В том же году построил самолёт с оригинальной силовой установкой, в которой поршневой двигатель и приводимый им центробежный компрессор служили для образования реактивной воздушной струи, и продемонстрировал подлёт на нём. Важной заслугой К. стало открытие им в 1910 явления “прилипания” струи газа к твёрдой поверхности, названной впоследствии “эффектом Коандэ” и используемого в энергетической механизации крыла (см. также статью Струйное течениев аэро- и гидродинамике, Коандэ закрылок). В°1911—1914 работал на английской фирме “Бристоль”, где создал ряд самолётов, в том числе строившихся серийно. В 1915 вернулся во Францию. В 1919 создал первое транспортное средство на воздушной подушке. Последние годы жизни провёл в Румынии.

А. Коанде.

Коандэ закрылок — закрылок, сохраняющий постоянную кривизну верхней поверхности при его отклонении и обдуваемый струёй сжатого воздуха или реактивной струёй воздушно-реактивного двигателя (см. Энергетическая механизация крыла и рис. 1, г, ж к ней). К. з. предназначен для увеличения подъёмной силы крыла за счёт отклонения струи вследствие эффекта А. Коандэ (способность струи прилипать к твёрдой поверхности, на которую осуществляется выдув) и эффекта суперциркуляции. Термин “К. з.” используется в основном в зарубежной литературе.

Ковалёв Валентин Фёдорович (1914—1972) — советский лётчик-испытатель, заслуженный лётчик-испытатель СССР (1963), Герой Советского Союза (1960). Участник Великой Отечественной войны. Окончил 1-ю авиационную школу ГВФ (1937), школу лётчиков-испытателей (1949). С 1949 на испытательной работе. Проводил исследовательские полёты на реактивных пассажирских самолётах на специальных и критических режимах. Установил мировые рекорды скорости полёта на самолётах Ту-104А на 1000-км и 2000-км маршрутах без груза и с грузом. Награждён 2 орденами Ленина, орденами Красного Знамени, Красной Звезды, 2 орденами “Знак Почёта”, медалями.

В. Ф. Ковалев.

Кованько Александр Матвеевич (1856—1919) — один из руководителей военного воздухоплавания в России, генерал-лейтенант (1913). Окончил Петербургское инженерное училище (1878). В 1884 назначен секретарём Комиссии по разработке вопросов применения воздухоплавания, голубиной почты и сторожевых вышек к военным целям. С 1885 командовал первой в русский армии воздухоплавательной частью. Организовал полёт Д. И. Менделеева на аэростате для наблюдения солнечного затмения в августе 1887. С 1890 командир учебного воздухоплавательного парка (в 1910 преобразован в Офицерскую воздухоплавательную школу), в котором прошли подготовку первые русские лётчики. С 1898 член воздухоплавательной комиссии Международного метеорологического комитета. Добился производства отечественных аэростатов и дирижаблей и предложил несколько своих конструкций, в русско-японскую войну 1904—1905 командовал 1-м Сибирским воздухоплавательным батальоном, организовал боевое применение привязных аэростатов для корректирования артиллерийского огня и наблюдения за противником.

А. М. Кованько.

Ковзан Борис Иванович (1922—1985) — советский летчик, полковник, Герой Советского Союза (1943). В Советской Армии с 1939. Окончил Одесское военное авиационное училище (1941), Военно-воздушную академию (1954; ныне имени Ю. А. Гагарина), участник Великой Отечественной войны. В ходе войны был лётчиком-истребителем, командиром звена, заместителем командира авиаполка. Совершил 360 боевых вылетов, сбил 28 самолётов противника, единственный в мире лётчик, совершивший 4 воздушных тарана (в 1941—1942). Во время выполнения 4-го тарана был тяжело ранен, лишился глаза. Снова вернулся в истребительную авиацию, сбил ещё 6 самолётов. После войны на командных должностях в Военно-воздушных силах (до 1958). Награждён 2 орденами Ленина, орденами Красного Знамени, Отечественной войны 1-й степени; Красной Звезды, медалями.

Лит.: Шипуля Л., Четыре тарана в небе, Минск; 1982.

Б. И. Ковзан.

Кожедуб Иван Никитович (1920—1991) — советский лётчик, маршал авиации (1985), трижды Герой Советского Союза (дважды 1944, 1945). В Советской Армии с 1940. Окончил Чугуевское военное авиационное училище лётчиков (1941), Военно-воздушную академию (1949; ныне имени Ю. А. Гагарина), Высшую военную академию (1956). Участник Великой Отечественной войны. В ходе войны был лётчиком-инструктором в Чугуевском училище, с марта 1943 — старшим лётчиком, командиром звена, командиром эскадрильи, заместителем командира истребительного авиаполка. Совершил 330 боевых вылетов, сбил 62 самолёта противника (в том числе 1 реактивный). После войны на ответственных должностях в Военно-воздушных силах. В 1964—1971 1-й заместитель командующего авиацией Московского военного округа, с 1971 на руководящей работе в центральном аппарате Военно-воздушных сил, с 1978 в группе генеральных инспекторов МО СССР. Депутат Верховного Совета СССР в 1946—1962. Награждён 2 орденами Ленина, 7 орденами Красного Знамени, орденами Александра Невского, 2 орденами Отечественной войны 1-й степени, 2 орденами Красной Звезды, орденом “За службу Родине в Вооружённых Силах СССР” 3-й степени, медалями. Бронзовый бюст в селе Ображиевка Сумской области.

Соч.: Служу Родине, М., 1950; Верность Отчизне, М., 1975.

Лит.: Денисов Н., И. Кожедуб, трижды герой, в кн.: Молодые герои Великой Отечественной войны. М., 1970.

И. Н. Кожедуб.

“козёл” — см. в статье Посадка.

Козлов Иван Фролович (1895 — 1973) — советский лётчик-испытатель. В 1915 призван в армию, служил мотористом на Балтийском флоте в отряде морских самолётов. Участник Гражданской войны. Окончил 1-ю Московскую авиационную школу (1922), работал лётчиком-инструктором Качинской военной авиационной школы лётчиков (1923—1924), лётчиком-испытателем в научно-исследовательском институте Военно-воздушных сил (1925—1931), затем лётчиком-испытателем и начальником лётной части Центрального аэрогидродинамического института (1931—1941), начальником ЛИС авиационных заводов (1941—1953). Освоил 70 типов самолётов, среди них 20 опытных. Награждён орденами Ленина, Трудового Красного Знамени, 2 орденами Красной Звезды, медалями.

И. Ф. Козлов.

Козлов Михаил Васильевич (1928—1973) — советский лётчик-испытатель, полковник, заслуженный лётчик-испытатель СССР (1972), Герой Советского Союза (1966). В Советской Армии с 1946. Окончил Тамбовское военное авиационное училище лётчиков (1947), Кировабадское военное авиационное училище лётчиков (1951), школу лётчиков-испытателей (1957), Московский авиационный институт (1966). С 1957 на испытательной работе в ОКБ А. Н. Туполева, с 1970 начальник лётной службы ОКБ. Участвовал в доводке опытных самолётов, проводил исследовательские полёты на специальных и критических режимах, участвовал в заводских и государственных испытаниях первого в мире сверхзвукового пассажирского самолёта Ту-144. Летал на самолётах и вертолётах 50 типов. Погиб при выполнении демонстрационного полёта самолёта Ту-144 в Париже. Награждён орденами Ленина, Октябрьской Революции, 2 орденами Красной Звезды, орденом “За службу Родине в Вооружённых Силах СССР” 2-й и 3-й степени.

М. В. Козлов.

Кознов Анатолий Андреевич (1927—1964) — советский лётчик-испытатель, подполковник. Закончил спецшколу Военно-воздушных сил (1945), Борисоглебское авиационное училище (1949; до 1955 лётчик-инструктор там же), школу лётчиков-испытателей, по окончании которой в 1957 назначен в КБ П. О. Сухого. За время работы в КБ провёл более 400 испытательных полётов на опытных, экспериментальных и серийных самолётах 23 типов, среди которых Су-11, Су-7, Су-7Б, Су-7БМ, Су-7БКЛ (колёсно-лыжный вариант) и др. Установил абсолютный мировой рекорд скорости — 2337 км/ч на 500-км замкнутом маршруте на самолёте Т-431 с турбореактивным двигателем (1962). Погиб при испытании самолёта. Награждён медалями.

А. А. Кознов.

кок — вспомогательная конструкция летательного аппарата обычно в виде конусообразного обтекателя. Устанавливается на законцовках хвостовой части фюзеляжа, мотогондолы или на передней части оси воздушного винта летательного аппарата для уменьшения аэродинамического сопротивления. Габариты К. определяются размерами закрываемого оборудования и обводами ответной части летательного аппарата. К., как правило, выполняется в виде единой штампованной или “давленой” детали из листового алюминия.

Коккинаки Владимир Константинович (1904—1985) — советский лётчик-испытатель, генерал-майор авиации (1943), заслуженный лётчик-испытатель СССР (1959), заслуженный мастер спорта СССР (1959), дважды Герой Советского Союза (1938, 1957). В Советской Армии с 1925. Окончил Борисоглебскую лётную школу (1930). Служил в Военно-воздушных силах. В 1935—1965 работал лётчиком-испытателем в ОКБ С. В. Ильюшина. Совершил перелёты: Москва — Севастополь — Свердловск — Москва, 1937; Москва — Спасск-Дальний (совместно с А. М. Бряндинским), 1938; Москва — о. Мискоу (Миску) в США (совместно с М. X. Гордиенко), 1939. Им установлено 14 мировых рекордов высоты и скорости полёта, проведены заводские испытания штурмовиков Ил-2, Ил-10, бомбардировщика Ил-4. В годы Великой Отечественной войны совмещал работу летчика-испытателя, начальника Главной инспекции Наркомата авиационной промышленности и руководителя ЛИС. В послевоенный период испытывал военные и гражданские самолёты (в том числе Ил-12, Ил-14, Ил-18, Ил-62). Летал на самолётах 62 типов. С 1961 вице-президент, с 1967 президент, а с декабря 1968 почётный президент Международной авиационной федерации. Золотая авиационная медаль Международной авиационной федерации, ожерелье “Роза ветров” с бриллиантами. Депутат Верховного Совета СССР в 1937-1950. Ленинская премия (1960). Награждён 6 орденами Ленина, орденом Октябрьской Революции, 3 орденами Красного Знамени, орденами Отечественной войны 1-й и 2-й степени, 4 орденами Красной Звезды, медалями. Бронзовый бюст в Новороссийске.

Лит.: Водопьянов М. В., Небо начинается с земли, М., 1976.

В. К. Коккинаки.

Коккинаки Константин Константинович (р. 1910) — советский лётчик-испытатель, полковник, заслуженный лётчик-испытатель СССР (1963). Герой Советского Союза (1964), Брат В. К. Коккинаки. Окончил Сталинградскую военную авиационную школу (1932). работал лётчиком-испытателем на заводе №1 имени Авиахима и в ОКБ А. И. Микояна. Участник Великой Отечественной войны. Был командиром истребительного авиаполка особого назначения (после гибели С. П. Супруна), сформированного из лётчиков-испытателей. Проводил испытания серийных самолётов МиГ на заводе №30 (1942—1950). С 1951 в ОКБ А. И. Микояна, где проводил летные испытания многих дозвуковых и сверхзвуковых истребителей, в том числе лётные исследования первых опытных образцов турбореактивных двигателей с осевым компрессором на экспериментальном самолёте СМ-1. Установил абсолютный мировой рекорд скорости полёта по замкнутому маршруту 100 км на самолете Е-66 — 2148,66 км/ч (1960). Медаль А. де Лаво. Награждён 3 орденами Ленина, 2 орденами Красного Знамени, 3 орденами Отечественной войны 1-й степени, 2 орденами Красной Звезды, орденом Дружбы народов, медалями, иностранным орденом.

К. К. Коккинаки.

Колдунов Александр Иванович (р. 1923) — советский военачальник, Главный маршал авиации (1984), дважды Герой Советского Союза (1944, 1948). В Советской Армии с 1941, Окончил Качинскую военную авиационную школу лётчиков имени А. Ф. Мясникова (1943), Военно-воздушную академию (1952; ныне имени Ю. А. Гагарина), Военную академию Генштаба Вооруженных Сил СССР (1960). Участник Великой Отечественной войны. С мая 1943 летчик-истребитель, командир звена, командир эскадрильи. Совершил 358 боевых вылетов, сбил 46 самолётов противника. После войны на ответственных должностях в Военно-воздушных силах и Войсках противовоздушной обороны. В 1970—1975 командующий войсками Московского округа противовоздушной обороны, с 1975 1-й заместитель, в 1978—1987 главнокомандующий Войсками противовоздушной обороны страны. Депутат Верховного Совета СССР в 1974—1989. Ленинская премия (1984). Награждён 3 орденами Ленина, 6 орденами Красного Знамени, орденами Александра Невского, 2 орденами Отечественной войны 1-й степени, орденами Красной Звезды, “За службу Родине в Вооружённых Силах СССР” 3-й степени, медалями, а также иностранными орденами. Бронзовый бюст в деревне Мощиново Смоленской области.

А. И. Колдунов.

колеоптер (от греческого kole{{ó}}s — ножны и pt{{é}}ron — крыло) — см. в статье Кольцеплан.

колеса шасси — служат для перемещения и руления при взлёте и посадке летательного аппарата. Применяются нетормозные (на передних стойках, хвостовых и подкрыльевых опорах; см. рис.) и тормозные К. ш., которые могут иметь колодочные, камерные, ленточные, дисковые тормоза (см. Тормоза самолёта).

Основные элементы — литой или штампованный барабан с двумя ребордами и пневматик. В корпус барабана запрессовываются радиально-упорные подшипники и устанавливаются тормоза. Для уплотнения внутренней полости барабана служат сальники и защитные крышки. На барабане монтируются камерные или бескамерные пневматики. Бескамерный пневматик состоит из каркаса, колец жёсткости, брекера (слоя резины) и протектора. Камерный пневматик, кроме того, имеет камеру с вентилем и подпятником. Многослойный каркас пневматика изготавливается из капронового корда. Для жёсткости в борт пневматика заделывается металлическое кольцо.

В зависимости от посадочной скорости летательного аппарата и требований к его проходимости различают пневматики сверхнизкого (250—350 кПа, посадочная скорость до 200 км/ч); низкого (350—650 кПа, скорость до 250 км/ч); высокого (650—1000 кПа, скорость до 300 км/ч) и сверхвысокого (более 1000 кПа, скорость более 300 км/ч) давления. Поверхность пневматиков выполняется рельефной. Рисунок обеспечивает устойчивость движений колеса и увеличивает сцепление с грунтом. Обычно температура в зоне контакта пневматика с колесом не превышает 125{{°}}С, в зоне тормозного пакета не должна превышать 450—500{{°}}С, в то время как температура на поверхности фрикционных элементов может превышать 1000{{°}}С. Такой жёсткий тепловой режим требует принудительной воздушной вентиляции, замкнутой системы жидкостного охлаждения или системы охлаждения испарительного типа (смесь воды со спиртом) для боевых самолётов. Время остывания колеса и тормоза (иногда 3—4 ч) накладывает ограничения на эксплуатационный режим самолёта (например, не более 4 посадок за 10 ч работы).

Лит.: Шульженко М. Н., Конструкция самолетов, 3 изд., М., 1971; Зверев И. И., Коконин С. С., Проектирование авиационных колес и тормозных систем, М., 1973

Ю. В. Макаров.

Нетормозное колесо: 1 — втулка; 2 — вентиль; 3 — съемная реборда; 4 — подшипник; 5 — сальник; 6 — камера; 7 — покрышка.

Колесов Пётр Алексеевич (р. 1915) — советский конструктор авиационных двигателей, профессор (1976), доктор технических наук (1971). После окончания Московского авиационного института (1941) работал в ОКБ В. А. Добрынина. В 1960—1984 главный конструктор Рыбинского КБ моторостроения. Под руководством К. создан ряд турбореактивных двигателей для самолётов А. Н. Туполева, А. А. Туполева, П. О. Сухого, А. И. Микояна, А. С. Яковлева, Государственная премия СССР (1951, 1971, 1979). Награждён 2 орденами Ленина, орденами Октябрьской Революции, Трудового Красного Знамени, медалями.

П. А. Колесов.

колея шасси — расстояние между центрами контактов колёс, лыж или поплавков основной опоры шасси с поверхностью земли, палубы корабля или воды при стоянке летательного аппарата.

количества движения теорема — то же, что импульсов теорема.

количества движения уравнения в аэро- и гидродинамике — фундаментальная система уравнений, выражающая в интегральной или дифференциальной форме закон сохранения импульсов.

Интегральная форма К. д. у. (см. Сохранения законы) используется обычно при эйлеровом подходе к решению задачи и применяется к некоторому объёму жидкости, ограниченному так называем контрольной поверхностью. При удачном выборе контрольной поверхности удаётся получить важные для практики результаты (например, интегральные характеристики обтекаемого тела), используя информацию на границе контрольной поверхности без определения поля течения в целом. Для установившегося течения интегральную форму К. д. у. называют также импульсов теоремой. Интегральная форма К. д. у., применённая к конечному объёму в соответствии с заданным набором точек, используется при получении конечно-разностных схем для численного интегрирования К. д. у., записанных в дифференциальной форме.

Дифференциальная форма К. д. у. зависит от подхода к исследованию движения сплошной среды и её модели. При эйлеровом и лагранжевом подходах к изучению течения идеальной жидкости К. д. у. представляют собой Эйлера уравнения и Лагранжа уравнения. При эйлеровом подходе к изучению течения вязкой жидкости в общем случае К. д. у. имеют вид Навье — Стокса уравнений, из которых как предельные случаи движения при малых и больших Ревнольдса числах следуют более простые уравнения Стокса — Осеена и уравнения Прандтля (см. Пограничный слой).

коллапс (от латинского collapsus — ослабевший, упавший) — острая сосудистая недостаточность, развивающаяся в результате падения сосудистого тонуса и уменьшения объёма циркулирующей крови. Уменьшение притока венозной крови к сердцу приводит к падению артериального и венозного давлений, нарушениям кровоснабжения тканей и обмена веществ. Развивающаяся при этом гипоксия угнетает жизненно важные функции организма. В авиационной практике К. может наступить вследствие острого недостатка кислорода, больших перегрузок, резких изменений позы, чрезмерного физического напряжения, травм. Признаки К.: при сохранении сознания резкая слабость, безучастность, головокружение, ослабление зрения, шум в ушах, жажда, бледность, снижение температуры кожи, поверхностное учащенное дыхание (без жалоб на удушье), пульс обычно частый (реже замедленный) слабого наполнения, иногда аритмичный, глухость сердечных тонов, на ЭКГ — признаки недостаточности коронарного кровообращения.

коллектор аэродинамической трубы — см. в статье Конфузор.

“колокол” — фигура пилотажа, выполняемая в вертикальной плоскости: в начале траектория полета летательного аппарата искривляется вверх с последующим крутым набором высоты до полной потери скорости; фигура заканчивается падением летательного аппарата с поворотом корпуса в ту или в другую сторону (см. рис.) и с переходом в крутое пикирование. Вывод летательного аппарата из пикирования осуществляется обычным способом. “К.” небезопасен, так как может привести к остановке двигателя, к срыву в штопор; выполняется только в соревнованиях по высшему пилотажу.

Два способа выполнения колокола.

колонка штурвальная — один из рычагов управления для отклонения рулей высоты (см. Рули управления) и элеронов (рис. 1). К. ш. устанавливаются на тяжёлых самолётах. В кабине экипажа обычно находятся две жёстко связанные между собой К. ш. — перед командиром воздушного судна и вторым пилотом; они крепятся шарнирно к полу кабины. К. ш. могут также размещаться за приборной доской и приводиться в действие при помощи штурвала, укреплённого на валу, который проходит через приборную доску. По принятым в мировой практике правилам при движении К. ш. “на себя” нос самолёта должен подниматься, при повороте штурвала по часовой стрелке самолёт должен крениться вправо.

Форма и размер К. ш. зависят от компоновки кабины экипажа, приборной доски и наличия в системах управления гидроусилителей. На первых самолётах, например, на “Русском витязе”, устанавливались круглые штурвалы (рис. 2). В дальнейшем для обеспечения лучшего обзора приборов от штурвалов круглой формы отказались. Впервые К. ш. была установлена на самолёте “Гаккель-III”. Штурвал был установлен на колонке горизонтально.

См. статью Штурвальное управление.

Рис. 1. Колонка штурвальная; 1 — колонка; 2 — штурвал; 3 — переключатель “Совмещённое управление”; 4 — переключатель “Уход на второй круг”; 5 — переключатель “Аварийное управление механизмом перестановки стабилизатора”; 6 — переключатель “Отключение автопилота”; 7 — переключатель “Управление механизмом перестановки стабилизатора”; 8 — переключатель “Радио”; 9 — рычаг управления элеронами; 10 — кронштейн крепления колонии; 11 — рычаг управлении рулями высоты; 12 — горизонтальный вал связи двух колонок.

Рис. 2. Штурвальное управление самолёта “Русский витязь”.

Колошенко Василий Петрович (р. 1922) — советский лётчик-испытатель, заслуженный лётчик-испытатель СССР (1972), мастер спорта международного класса (1971), Герой Советского Союза (1371). Окончил Тамбовскую военную школу лётчиков (1943). Работал инструктором. В 1953—1960 в полярной авиации (работал на ледовой разведке, проводке морских судов, участвовал в антарктических экспедициях). В 1960—1980 лётчик-испытатель ОКБ имени М. Л. Миля. В 1966 К. на вертолёте — Ми-6 тушил лесные пожары во Франции, где ему присвоено звание “Почётный пожарник Парижа”. Установил 15 мировых рекордов на вертолётах по грузоподъёмности, скорости и высоте. Награждён орденами Ленина, Красной Звезды, медалями.

В. П. Колошенко.

кольцеплан — летательный аппарат с крылом, имеющим при виде спереди правильную кольцевую форму. В схеме летательного аппарата, предложенной в СССР в 1942 (см. рис.), внутренняя полость кольцевого крыла обдувается воздушной струёй, отбрасываемой двумя соосными винтами противоположного вращения, расположенными на входе в крыло. Хвостовое оперение в конце короткого фюзеляжа и элероны, установленные на двух профилированных пилонах, крепящих кольцевое крыло к фюзеляжу, находятся в зоне интенсивного обдува струёй от винтов, что повышает их эффективность. Эта аэродинамическая схема имеет некоторые особенности. Например, на закритичных углах атаки срыв потока будет происходить без нарушения симметрии обтекания и, следовательно, К. будет неспособен к авторотации. В 1959 во Франции фирмой СНЕКМА был построен экспериментальный летательный аппарат с кольцевым крылом (самолёт вертикального взлёта и посадки с турбореактивным двигателем), получивший название колеоптер, и проведены его испытания в вертикально подвешенном состоянии.

Проект кольцеплана (воздушные винты не показаны).

кольчугалюминий — см. в статье Алюминиевые сплавы.

командно-диспетчерский пункт (КДП) — сооружение на территории аэропорта или аэродрома, из которого осуществляются централизованное управление воздушным движением (УВД) в районе аэродрома (при подходе), в зоне взлёта и посадки и контроль за воздушным движением в пределах установленных границ в районе диспетчерской службы и в зоне местных воздушных линий. Из КДП осуществляется управление движением летательных аппаратов и спецавтотранспорта по аэродрому. В КДП производятся оформление предполётной и послеполётной документации, предполётная подготовка экипажей, подготовка и планирование полётов. Здесь собирается и обрабатывается метеоинформация, которая передаётся командному, лётному и диспетчерскому составу. Из КДП осуществляются дистанционное управление и контроль за радиотехническим и светосигнальным оборудованием аэродрома.

В КДП размешаются следующие диспетчерские пункты: районный центр Единой системы управления воздушным движением или районный диспетчерский пункт, местный диспетчерский пункт, диспетчерский пункт подхода или главный диспетчерский пункт подхода, вспомогательный диспетчерский пункт круга, диспетчерский пункт системы посадки, диспетчерский пункт руления, стартовый диспетчерский пункт, аэродромный диспетчерский пункт, производственно-диспетчерская служба предприятия. В зависимости от максимального числа летательных аппаратов, обслуживаемых в 1 ч (в том числе взлётов и посадок на аэродроме) и пролетающих через зону района диспетчерской службы, КДП подразделяются на 6 разрядов (КДП-I, КДП-II, КДП-III и т. д.). КДП строятся с вышкой, фонарь которой обеспечивает обзор аэродрома и воздушной зоны в пределах, установленных для диспетчеров стартового пункта и пункта руления.

А. П. Журавлёв.

комбинированный двигатель — двигатель авиационный, в котором сочетаются элементы двигателей различных схем с целью улучшения его характеристик в широком диапазоне условий полёта и режимов работы. Исходными для образования К. д. могут служить двигатели, работающие по циклам: р = const (Брайтона, ракетный), V = const, смешанному (периодического сгорания), циклам поршневых двигателей, двигателей внешнего сгорания и др. (см. Цикл двигателя термодинамический). Можно выделить две основные группы К. д.: 1) двигатели комбинированных циклов, сочетающие циклы различных исходных двигателей в пределах тракта с обменом энергией между составляющими циклы процессами; 2) двигатели, в которых используются общие элементы для реализации различных циклов в разных условиях (режимах полёта и режимах работы).

К первой группе относятся: турбопрямоточный двигатель эжекционного типа с передачей части энергии продуктов сгорания воздуху, поступающему в прямоточный контур; турбовинтовой двигатель (ТВД), в котором часть свободной энергии цикла расходуется на привод винта; турбореактивный двухконтурный двигатель (ТРДД), в котором часть свободной энергии цикла расходуется на сжатие воздуха, поступающего в вентиляторный контур; ракетно-турбинный двигатель (РТД), в котором часть энергии продуктов сгорания передаётся воздуху, сжимаемому компрессором, и др. Рабочий цикл всех К. д. можно разделить на два подцикла: генераторный, служащий для вырабатывания энергии, передаваемой рабочему телу, участвующему в основном цикле, и основной, в котором подведённая энергия превращается в работу двигателя или (и) движителя. В общем случае энергия генераторного цикла может быть передана основному циклу в любой форме (в виде механической работы, теплоты). Термодинамическая эффективность К. д. первой группы определяется увеличенной по сравнению с двигателями исходных типов разностью температур источника энергии и холодильника в обоих циклах и увеличением суммарной степени повышения давления в цикле. Поэтому, например, в РТД, благодаря повышению давления в генераторном цикле и росту термического коэффициента полезного действия η по сравнению с соответствующими значениями тех же величин в турбореактивном двигателе, можно уменьшить габаритные размеры и массу, а благодаря увеличению полётного коэффициента полезного действия по сравнению с коэффициентом полезного действия ракетного двигателя — повысить полный коэффициент полезного действия (см. Коэффициент полезного действия реактивного двигателя). По способам передачи энергии от генераторного цикла основному различают: К. д. с отбором механической работы, но без отбора теплоты, то есть без смешения рабочих тел, участвующих в циклах, и без теплопередачи от генераторного цикла основному (турбореактивный двухконтурный двигатель, турбореактивный двухконтурный двигатель с форсажом во II контуре, РТД вентиляторного типа, РТД с раздельными газогенераторным и основным контурами и т. д.); К. д. с отбором теплоты, но без отбора механической энергии от генераторного цикла к основному, то есть двигатели замкнутых схем с теплообменом между генераторным и основным циклами (атомный ТРД, двигатель внешнего сгорания с регенерацией теплоты и др.); К. д. с отбором механической работы и тепловой энергии от генераторного цикла для основного, то есть со смешением рабочих тел, участвующих в циклах, либо К. д. без смешения потоков, но с передачей механической работы и теплоты от генераторного цикла основному через турбокомпрессор и теплообменник или в процессе смешения (турбореактивный двухконтурный двигатель с форсажной камерой со смешением потоков, РТД со смешением потоков, РТД “пароводородной” схемы с приводом турбины от газифицированного и подогретого водорода, водородные РТД с ожижением части воздуха за компрессором, ракетно-прямоточные двигатели различных типов и т. д.). Оптимальное значение передаваемой энергии от генераторного цикла основному и способ её передачи (в виде теплоты или механической работы) для достижения максимальной экономичности этих типов К. д. в общем случае зависят от значения свободной энергии генераторного цикла, режима полёта и коэффициента полезного действия элементов.

Ко второй группе К. д. можно отнести обычные турбопрямоточные двигатели, в которых затурбинная камера сгорания на турбокомпрессорном режиме играет роль форсажной камеры с дожиганием топлива в цикле турбореактивного двигателя с форсажной камерой или турбореактивного двухконтурного двигателя с форсажной камерой, а на прямоточном режиме служит камерой сгорания бескомпрессорного прямоточного воздушно-реактивного двигателя (прямоточный воздушно-реактивный двигатель). К этой группе также относятся так называемые интегральные прямоточные воздушно-реактивные двигатели, в которых камера сгорания в одном диапазоне режимов полёта работает как камера сгорания ракетного двигателя твёрдого топлива, а в другом (после выгорания твёрдого топлива) — как камера сгорания прямоточного воздушно-реактивного двигателя. Основные особенности параметров и характеристик К. д. этой группы обусловлены особенностями рабочего процесса двигателей исходных циклов в соответствующих условиях полёта, а также условиями перехода с одного режима на другой. Преимущества К. д. этой группы — возможность уменьшения габаритных размеров и массы по сравнению с соответствующими параметрами смешанной двигательной установки, состоящей из устанавливаемых на летательном аппарате двигателей двух типов, реализующих исходные циклы.

Р. И. Курзинер.

Комендантов Георгий Леонидович (1910—1985) — один из основоположников авиационной медицины в СССР, профессор (1965), доктор медицинских наук (1963), полковник медицинской службы. Окончил Ленинградский медицинский институт (1931). Ученик Л. А. Орбели. Участник Великой Отечественной войны. С 1960 заведующий кафедрой авиационной медицины Центрального института усовершенствования врачей. Автор более 200 научных работ, посвящённых вопросам влияния ускорений на организм лётчика, пространственной ориентировки лётчика в полёте, спасения членов экипажа в аварийных условиях и пр., более 30 учебных пособий для авиационных врачей. Государственная премия СССР (1952). Награждён орденами Красного Знамени, Красной Звезды, медалями.

Г. Л. Комендантов.

коммерческая нагрузка — см. в статье Нагрузка.

коммерческие права — см. в статье “Свободы воздуха”.

коммерческие соглашения — договоры между авиапредприятиями транспортными различных стран, заключаемые на основании соглашений о воздушном сообщении между этими странами. Регулируют взаимоотношения авиапредприятий по техническим и коммерческим вопросам организации и обеспечения полётов воздушных судов и перевозок пассажиров, грузов и почты.

Различают три группы К. с.: 1) соглашения, предусматривающие все виды технического и коммерческого обслуживания воздушных судов, в том числе заправку топливом, а также порядок взаимоотношении с агентами перевозчика, размеры комиссионных сборов и платы за обслуживание, порядок расчётов и т. д.; 2) соглашения, регулирующие порядок эксплуатации воздушных линий авиапредприятиями и распределение между сторонами расходов и доходов по эксплуатации. При совместной эксплуатации расходы и доходы между сторонами распределяются на согласованных между ними условиях; при эксплуатации в пуле — каждая из сторон несёт эксплуатационные расходы самостоятельно, а полученные доходы вносятся в пул по согласованным средним доходным (пульным) ставкам и затем распределяются между сторонами; 3) соглашения, предусматривающие другие формы сотрудничества: обмен экипажами, совместно использование запасных частей к самолётам, тренажёров, ремонтных баз.

коммерческий акт — документ, удостоверяющий обстоятельства, которые могут служить основанием для ответственности имущественной перевозчика, пассажиров, отправителей и получателей груза. Составляется в аэропорту назначения при выдаче багажа или груза; при обнаружении неисправностей при перевозке К. а. может быть составлен также в аэропорту отправления или в промежуточном аэропорту. К. а. составляется уполномоченными представителями перевозчика с участием получателя, если неисправность обнаружена в его присутствии, или с привлечением лица, обнаружившего неисправность груза или багажа. К. а. служит основанием для розыска багажа и груза или их владельцев, расследования причин и выявления виновников порчи, утраты и хищения багажа или груза, удовлетворения или отклонения претензий пассажиров, получателей к отправителей груза. При международных воздушных перевозках К. а. составляется в форме Акта о неисправностях при перевозке багажа — PIR (Property Irregularity Report) либо Акта о неисправностях при перевозке груза — CIR (Cargo Irregularity Report).

компас авиационный — навигационный прибор для измерения курса летательного аппарата. В авиации используют астрокомпасы (см. Астронавигационные системы), гирокомпасы, магнитные К., радиокомпасы. В связи со значительными погрешностями измерений магнитные К. используют только как резервные.

компенсатор взмаха — то же, что регулятор взмаха.

компенсация органов управления — совокупность средств для уменьшения шарнирных моментов; смотри Аэродинамическая компенсация, Весовая компенсация, Сервокомпенсация.

композиционные материалы — материалы, состоящие из основы (матрицы) и наполнителя (введённых в неё компонентов с заданными свойствами) с сохранившимися границами раздела между ними. Свойства К. м. определяются совокупностью свойств и соотношением входящих в их состав компонентов, в результате чего К. м. могут обладать такими свойствами, которых не имеют компоненты, взятые в отдельности.

По характеру структуры и геометрической форме компонентов, входящих в состав К. м. они подразделяются на волокнистые, дисперсно-упрочнённые, слоистые и гибридные. Матрицей (связующим) и наполнителем (волокнами, частицами и др.) могут быть металлы и сплавы, полимеры, тугоплавкие элементы и соединения. Комбинируя содержание компонентов и их расположение в объёме, можно создавать К. м. с требуемыми механическими (в том числе фрикционными и антифрикционными). электрическими, магнитными, ядерными, химическими, оптическими, теплозащитными и другими свойствами.

Из всех видов К. м. наибольшее распространение получили волокнистые К. м. радиотехнического, теплозащитного и особенно конструкционного назначения. При создании волокнистых К. м. применяются непрерывные и дискретные волокна, нитевидные кристаллы различных веществ и соединений (оксидов, карбидов, боридов, нитридов и др.): стеклянные, кварцевые, асбестовые, углеродные, борные, органические, а также металлические проволоки, отличающиеся высокими значениями прочности и модуля упругости. Армирующие наполнители используются в виде моноволокна и жгутов, нитей, тканей, проволоки, сетки, бумаг и других волокнистых материалов. Прочностные и деформативные характеристики волокнистых К. м. определяются свойствами упрочняющих волокон, их размерами, ориентацией и содержанием в материале. Свойствами матрицы определяются характеристики К. м. в направлениях, отличных от ориентации волокон, характер изменения свойств К. м. при воздействии температуры, атмосферных и других факторов, режимы получения и переработки К. м. в изделия.

Соотношение между компонентами в К. м. выбирается в зависимости от природы наполнителя и матрицы, структуры и назначения материала. Монолитность К. м. определяется взаимным соответствием компонентов (прочность, удлинение, коэффициент линейного расширения, термодинамическая совместимость и т. д.) и прочностью сцепления между ними, которая зависит от адгезии и полноты контакта фаз на границе раздела волокно — матрица. В целях повышения прочности сцепления по границе раздела и термической стабильности К. м. армирующий наполнитель подвергают физико-химической обработке (аппретирование, травление, активирование) или наносят разделительные покрытия (металлические, пироуглеродные, оксидные, карбидные и т. п.). Многие свойства К. м. могут быть рассчитаны по характеристикам компонентов, их соотношению и расположению в объёме материала с использованием теории механики составных сред.

Волокнистая форма наполнителя и различие в прочностных, деформативных и физических характеристиках волокон и матриц определяют существенную анизотропию свойств К. м. Наибольшая степени анизотропии присуща К. м. с параллельным (однонаправленным) расположением волокон. У таких материалов прочностные и упругие характеристики в направлении ориентации волокон могут на 1—2 порядка отличаться от аналогичных характеристик в поперечном направлении. Регулирование степени анизотропии и свойств К. м. достигается перекрёстным расположением армирующих слоев, созданием структуры с пространственной схемой армирования. Расширение диапазона регулирования свойств К. м. обеспечивается созданием гибридных К. м., содержащих волокна разной природы (например, углеродные и стеклянные), введением в межволоконное пространство нитевидных кристаллов и фольги между слоями волокон.

Уровень рабочих температур К. м. определяется в первую очередь природой матрицы, термостойкостью и термостабильностью её и границы раздела. В промышленности наибольшее распространение получили полимерные К. м. на основе модифицированных, эпоксидных, фенольных, имидных и кремнийорганических связующих в сочетании со стеклянными, углеродными и органическими волокнами (рабочие температуры 150—400{{°}}С) и металлические К. м. с матрицами на основе алюминиевых, магниевых, титановых и никелевых сплавов с борными, углеродными волокнами, стальной, вольфрамовой проволоками (рабочие температуры 300—1200{{°}}С). Рабочие температуры дисперсноупрочненных никелевых сплавов достигают 1300{{°}}С, а К. м. на основе карбидов, нитридов, а также углерод-углеродных К. м., в которых углеродные волокна связаны коксом и пироуглеродом, — 1500—2200{{°}}С.

К. м. по комплексу характеристик (удельная прочность, удельный модуль упругости, усталостная и длительная прочность, деформационная теплостойкость, демпфирующая способность) превосходят традиционные конструкционные материалы. Полимерные К. м. наряду с конструкционными свойствами обладают рядом специальных свойств — радиотехнических, теплозащитных, электротехнических, фрикционных и т. п.

При изготовлении деталей из К. м. материал и изделие формуются одновременно, при этом изделию сразу придают заданные геометрические размеры. Природа матрицы и тип армирующего наполнителя, конструкция и размеры деталей определяют выбор метода переработки К. м. в изделие, обеспечивающие совмещение волокон и матрицы, ориентацию волокон, уплотнение материала и его отвердевание. Технология изготовления деталей из волокнистых К. м. включает следующие основные операции: подготовка армирующего наполнителя, совмещение наполнителя с матрицей (получение полуфабрикатов — препрегов), сборка и ориентация слоев наполнителя по форме детали, уплотнение и термообработка, механическая обработка.

Подготовка армирующего наполнителя включает операции, направленные на подготовку поверхности волокон к совмещению и последующему взаимодействию с матрицами. Среди них: аппретирование и подшлихтовка — нанесение на поверхность минеральных и металлических волокон кремнийорганических и других соединений, обеспечивающее их гидрофобность и химическое взаимодействие с полимерной матрицей; активирование поверхности — обработка борных, углеродных и металлических волокон в жидких и газообразных окислителях, приводящая к окислению и стравливанию поверхностного слоя.

Совмещение армирующего наполнителя с матрицей производится в зависимости от природы матрицы различными способами: нанесением раствора или расплава при прохождении волокна через жидкое связующее, плазменным напылением, пропиткой под вакуумом или давлением, дублированием с фольгой или плёнкой (матрицей) при прокатке. Для улучшения проникновения матрицы в межволоконное пространство применяют принудительную пропитку, например, с помощью роликов или ультразвука.

Способ сборки и ориентации армирующего наполнителя определяется геометрией деталей и формой армирующего наполнителя или препрега. При использовании тканей, сеток, широких лент применяют ручную выкладку слоев, предварительно раскроенных по шаблонам. Для ориентации армирующего наполнителя в плоских деталях и деталях однозначной кривизны используют специальные выкладочные машины-автоматы с программным управлением. Для деталей, имеющих форму тел вращения или близкую к ним, широко применяется метод намотки, которая производится на многокоординатных станках с программным управлением. Ориентация волокон в профилях различных сечений осуществляется методом протяжки.

Уплотнение материала, обеспечивающее его монолитность и заданное соотношение компонентов, осуществляется при его нагревании в специальной оснастке на гидравлических прессах, автоклавах, гидроклавах, литьевых машинах при давлении от 0,09 до 50 МПа. Для достижения температуры, необходимой для размягчения и сварки металлических К. м. или отверждения полимерных К. м., наряду с традиционными методами применяются нагрев токами высокой частоты, инфракрасный нагрев и нагрев пропусканием электрического тока через токопроводящие волокна К. м.

Механическая обработка К. м. производится алмазным и твердосплавным режущим инструментом при больших скоростях резания и малых подачах. При этом учитывают их особенности: низкую сдвиговую прочность, высокую твёрдость и абразивное действие ряда волокон (борных, стеклянных), низкую теплопроводность К. м. с органическими волокнами. Собирают конструкции из К. м. обычными методами (сваркой, пайкой, клёпкой). При сборке конструкций из полимерных К. м. наряду с клёпкой и установкой болтов широко применяется склеивание. Контроль качества конструкций, изготовленных из К. м., производится неразрушающими методами, позволяющими обнаружить такие дефекты, как искривления, разориентация и повреждение волокон (рентгеновский метод), расслоение, непроклеи, раковины (импедансный, ультразвуковой), трещины (люминесцентный).

К. м. широко используют в авиационно-космической промышленности. Их применяют при изготовлении самолётов и вертолётов, искусственных спутников Земли, ракет-носителей и др. Эффективное направление применения К. м. — использование их в обшивках и обечайках монолитных и трёхслойных конструкций, ёмкостях высокого давления, стержнях и балках. Удельная прочность таких конструкций в 1,5—2 раза выше, чем у аналогов из алюминиевых сплавов. Широкое применение в планёре летательного аппарата деталей и агрегатов из К. м. — одно из основных направлений повышения весовой эффективности новой авиационной техники. Использование К. м. в конструкциях средненагруженных деталей (поверхности управления, створки люков, антенные обтекатели, полы, перегородки салонов) , а также в конструкциях агрегатов (например, стабилизатора, крыла, отсеков фюзеляжа) позволяет не только снизить (на 10—15% и более, см. рис.) массу деталей и агрегатов, но и повысить надёжность их работы. Стекло-, угле- и органопластики находят применение в конструкциях воздушных винтов, несущих и рулевых винтов вертолётов, лопаток компрессоров газотурбинных двигателей. Высокая радиационная стойкость углепластиков и низкий коэффициент линейного термического расширения делают весьма эффективным их применение в космической технике (панели солнечных батарей, корпуса антенн и т. п.).

Лит.: Структура и свойства композиционных материалов, М., 1979; Композиционные материалы. Справочник, под общ. ред. В. В. Васильева, Ю. М. Тарнопольского, М., 1990.

Г. М. Гуняев, Е. В. Моисеев, Б. В. Перов, Г. Б. Строганов, Я. Я. Фридляндер, В. М. Чубаров.

Возможное снижение масс соответствующих агрегатов самолета (а) и вертолета (б) при использовании в их конструкциях композиционных материалов вместо металла.

компоновка летательного аппарата — взаимное пространственное расположение частей летательного аппарата и его различных устройств; процесс поиска рационального расположения частей летательного аппарата, помещений (отсеков), агрегатов. К. — один из трех процессов (помимо аэродинамического и весового проектирования), в результате которых определяются основные параметры и облик летательного аппарата в целом. Различают два основных вида К. — внешнюю, или аэродинамическую компоновку (см. Аэродинамическая схема), определяющую внешний облик летательного аппарата, и внутреннюю, определяющую его размеры (например, размеры фюзеляжа самолёта). Внутренняя К. — расположение кабины экипажа, оборудования и системы управления, помещении или отсеков, предназначенных для размещения целевой нагрузки. Для пассажирских самолётов — это салоны, багажно-грузовые и вспомогательные (бытовые) помещения; для военных — бомбовые отсеки, кабины стрелков и т. п.

Внутренняя К. должна обеспечивать максимальную плотность оборудования с целью создания фюзеляжа минимально возможных размеров; необходимые удобства для членов экипажа; размещение агрегатов и оборудования, предусматривающее свободный подход к ним (для повышения эксплуатационной технологичности), а также обеспечивающее минимальную длину электрических, гидравлических и других коммуникаций (для уменьшения массы); устройство салонов и вспомогательных помещений с максимально возможным комфортом для пассажиров.

А. К. Константинов.

компрессор газотурбинного двигателя — узел газотурбинного двигателя, служащий для повышения давления воздуха. Масса К. составляет от 25 (турбореактивного двухконтурного двигателя с форсажной камерой) до 40% (турбореактивного двигателя) массы газотурбинного двигателя. Степень повышения давления в К.({{π}}к*) по мере совершенствования газотурбинного двигателя возрастает: в первых турбореактивных двигателях {{π}}к* была равна 4—5, в турбореактивных двухконтурных двигателях и турбовинтовых двигателях 80-х гг. она достигает 30—40.

Для реализации термодинамического цикла с постоянным давлением в камере сгорания в авиационном газотурбинном двигателе используются только лопаточные К. (см. Лопаточные машины). Повышение давления в К. происходит в результате преобразования механической энергии, подводимой к валу К. от турбины, в потенциальную энергию воздуха. Во всех типах лопаточных К. передача механической энергии привода воздуху в соответствии с Эйлера формулой реализуется в роторе путём воздействия на поток аэродинамических сил, возникающих при обтекании лопаток рабочих колёс; при этом увеличивается и кинетическая и потенциальная энергия воздуха. В неподвижных элементах К. — направляющих аппаратах компрессора или диффузорах — часть кинетической энергии преобразуется в потенциальную.

К. газотурбинного двигателя состоит, как правило, из несколько последовательно расположенных ступеней (см. Ступень компрессора, турбины); по форме средней поверхности тока в них различают осевые (ОК), центробежные (ЦК), диагональные (ДК) и комбинированные, состоящие из ступеней разных типов (осецентробежные — ОЦК, оседиагональные). Форма поверхности тока определяет особенности преобразования энергии в рабочем колесе: в ОК работа сжатия примерно равна изменению кинетической энергии в относительном движении; в ЦК повышение давления в большей степени происходит вследствие изменения кинетической энергии в переносном движении, равного работе центробежных сил. Увеличение радиуса средней поверхности тока в ЦК и ДК увеличивает работу, передаваемую воздуху: при одинаковой окружной скорости на внешнем диаметре рабочего колеса работа ступени ЦК в 2—3 раза превышает работу осевой ступени.

При высоких {{πк*}} К. обычно делится на несколько последовательных, механически не связанных каскадов (групп ступеней), каждый из которых приводится отдельной турбиной; используются одно-, двух- и трёхкаскадные К. Первая (по потоку) группа ступеней называется К. низкого давления (КНД), К. газогенератора — К. высокого давления; средний каскад К. трехкаскадного двигателя — К. среднего давления. КНД двухконтурного турбореактивного двигателя состоит из вентилятора и (в некоторых случаях) подпорных ступеней, устанавливаемых во внутреннем контуре. В авиационном газотурбинном двигателе КНД составляется из осевых ступеней. ОК позволяет получить производительность до 200 кг/с с 1 м2 лобовой площади на входе в первое рабочее колесо. Политропический коэффициент полезного действия может превышать 90% (см. Коэффициент полезного действия компрессора, турбины).

Число ступеней ОК авиационного газотурбинного двигателя достигает 17; с конца 70-х гг., несмотря на рост {{π}}к* число ступеней в ОК вновь создаваемых двигателей уменьшается — средняя удельная работа на ступень увеличивается с 20—25 до 40—60 кДж*с/кг, главным образом за счёт увеличения окружной скорости до 500 м/с и более.

В каждом каскаде ОК (рис. 1) рабочие колёса жёстко связаны друг с другом сваркой, болтовыми соединениями, торцовыми шлицами или стяжным болтом. Наиболее распространённая конструкция ротора барабанно-дисковая. Лопатки рабочих колёс крепятся в ободе диска с помощью замков преимущественно типа “ласточкин хвост” или набираются в кольцевой паз на ободе диска. Лопатки направляющих аппаратов крепятся в кольце, устанавливаемом в наружном корпусе К., и либо выполняются консольными, либо объединяются по внутреннему диаметру кольцом, на котором укреплена уплотнительная обечайка, покрытая истираемым материалом, или сотовая. На соответствующем участке поверхности ротора выполняются в этом случае несколько кольцевых гребешков, образующих лабиринтное уплотнение, предотвращающее перетекание воздуха из области за направляющим аппаратом на вход в него.

Центробежный К. (рис. 2) состоит из входного направляющего аппарата, рабочего колеса (РК), безлопаточного и лопаточного диффузора и радиально-осевого канала со спрямляющим аппаратом. В авиационных конструкциях используются преимущественно полуоткрытые РК, представляющие собой диск с выполненными за одно с ним лопатками. В РК поток отклоняется в тангенциальном и радиальном направлениях. На выходном участке лопатки выполняются либо радиальными, либо загнутыми назад (“реактивное” колесо). Только в ЦК первых турбореактивных двигателей использовались “активные” колёса с лопатками, загнутыми на выходном участке в направлении вращения. Наиболее высокий коэффициент полезного действия и благоприятную форму характеристики имеют ЦК с реактивными колёсами, ЦК бывают двухступенчатыми или их комбинируют с осевыми ступенями. Степень повышения давления в ЦК зависит в основном от окружной скорости u2 на внешнем диаметре РК и отношения D2/D1 и достигает в первых ступенях 6—8, во второй и последней ступенях ОЦК — 3—4. Политропический коэффициент полезного действия 83—86% и существенно зависит от степени повышения давления и размеров К.

Конструкция ДК аналогична конструкции ЦК. Степень повышения давления в ДК также определяется значением u2, отношением D2/D1 и углом выхода потока из рабочего колеса и достигает {{π}}к* = 3—5 при политропическом коэффициенте полезного действия 85—87%; на коэффициент полезного действия значительно влияют диаметр компрессора и зазор между лопатками РК и корпусом, зависящий от жёсткости конструкции и тепловых деформаций.

Лит.: Нечаев Ю. Н., Федоров Р. М., Теория авиационных газотурбинных двигателей, ч. 1, М., 1977; Холщевников К. В., Елин О. Н., Митрохин В. Г., Теория и расчет авиационных лопаточных машин, М., 2 изд., 1986.

Л. Е. Ольштейн.

Рис. 1. Осевой компрессор двухконтурного ТРД: 1 — вентилятор; 2 — подпорные ступени; 3 — ротор компрессора высокого давления; 4 — компрессор высокого давления; 5 — направляющий аппарат с поворотными лопатками; 6 — звукопоглощающая облицовка.

Рис. 2. Схема центробежного компрессора: 1 — входной направляющий аппарат; 2 — рабочее колесо; 3 — безлопаточный диффузор. 4 — лопаточный диффузор; 5 — радиально-осевой диффузор; 6 — спрямляющий аппарат.

комсомольское-на-амуре авиационное производственное объединение — берёт начало от завода №126, решение о строительстве которого было принято в 1932 (заложен в 1934 и вступил в строй в 1936). Велось производство разведчика Р-6 (АНТ-7), а затем бомбардировщика ДБ-3. В годы Великой Отечественной войны завод изготовил свыше 2700 самолётов ДБ-3Ф (Ил-4). В первые послевоенные годы строил самолёты Ли-2, а с 1950 перешёл на производство реактивных самолётов. Выпускались МиГ-15бис, МиГ-17, МиГ-17ф, Су-7, Су-7Б, Су-27 и др. Предприятие награждено орденами Ленина (1942), Октябрьской Революции (1971). В 1989 на основе завода, носящего имя Ю. А. Гагарина, образовано производственное объединение.

“Комта” — один из первых советских опытных самолётов. Создан в 1920—1922 под руководством Комиссии по тяжёлой авиации (председатель Н. Е. Жуковский, В. Л. Александров, А. Н. Туполев, А. М. Черёмухин, Б. Н. Юрьев и др.). Триплан с двумя поршневыми двигателями “ФИАТ” мощностью по 177 кВт; кабина на 10 мест, взлётная масса 3550 кг. Скорость полёта до 130 км/ч, потолок 600 м. Самолёт получился не очень удачным и был передан в школу стрельбы и бомбометания. См. рис. в таблице X.

конвективный перенос (от латинского convectio — принесение, доставка) — процесс переноса какой-либо физической величины (массы, импульса, энергии и т. д.) в газообразной, жидкой или сыпучей среде вследствие перемещения макроскопических частей вещества среды. В аэродинамике имеет место так как вынужденный К. п., обусловленный внешними механическими факторами (например, перепад давления в канале). Из уравнений механики сплошных сред следует, что интенсивность К. п. пропорциональна мгновенному значению вектора скорости течения в данной точке пространства. Следствием К. п. являются, например, турбулентное трение и турбулентный тепловой поток.

В теории конвективного тепломассообмена К. п. рассматривается совместно с переносом физических величин, обусловленных взаимодействием хаотически движущихся молекул, то есть теплопроводностью, вязкостью и т. п. (см. Переноса явления).

конвенции международные — см. в статье Воздушное право.

конвертоплан —то же, что преобразуемый аппарат.

“Конвэр” (Convair — Consolidated Vultee Aircraft Corp.) — авиаракетостроительная фирма США. Основана в 1923 под названием “Консолидейтед”, название “К.” получила в 1943 после присоединения фирмы “Балти”, в 1954 стала отделением фирмы “Дженерал дайнемикс”, сохранив на некоторое время возможность продолжать самостоятельные разработки. Фирма выпускала тренировочные самолёты, истребители, военные и гражданские летающие лодки, в том числе PBY “Каталина” (первый полёт в 1935, выпущено 3290; см. рис. в таблице XX) и PB2Y “Коронадо” с четырьмя поршневыми двигателями (1937), бомбардировщики B-24 “Либерейтор” (1939, построено 18188, широко использовались во Второй мировой войне; смотри рис. в табл. XX) и В-32 “Доминейтор” (1942). После войны вела производство стратегического бомбардировщика В-36 “Конкерор” (1946, варианты с шестью поршневыми двигателями, с шестью поршневыми двигателями и четырьмя турбореактивными), сверхзвукового стратегического бомбардировщика B-58 “Хаслер” (1956; см. рис. в таблице XXXII), истребителей-перехватчиков F-102 “Дельта дэггер” (1953) и F-106 “Дельта дарт” (1956, см. рис.), а также пассажирских самолётов с поршневыми двигателями (Конвэр 240, 340 и 440), турбовинтовыми двигателями (Конвэр 580, 600 и 640) и турбореактивными двигателями или турбореактивными двухконтурными двигателями (Конвэр 880 и 990). Построен ряд экспериментальных самолётов: XF-92 с треугольным крылом (1948), самолёт вертикального взлёта и посадки XFY-1 с турбовинтовым двигателем мощностью 4310 кВт (1954, см. рис. в таблице XXXI), сверхзвуковой гидросамолет-истребитель “Си дарт” (1953). Основные данные некоторых самолётов фирмы приведены в таблице.

В. В. Беляев, М. А. Левин.

коническое течение — течение, в котором все газодинамические переменные постоянны вдоль прямых (лучей), проведённых из некоторой фиксированной точки (полюса). К. т. — распространенный вид пространственного течения, реализующийся при сверхзвуковом обтекании конусов, треугольных крыльев и т. д., а также в некоторых ограниченных областях неконических в целом потоков (боковая кромка прямоугольного крыла, крыло изменяемой геометрии, вырез на крыле и т. д.). В рамках модели К. т. существенно упрощается изучение пространственного обтекания тел, так как число независимых переменных уменьшается до двух (К. т. общего вида) и даже до одного (осесимметричное К. т.). Впервые осесимметричное К. т. — сверхзвуковое обтекание кругового конуса — было рассмотрено в 1929 А. Буземаном. В этом случае присоединённый к носку скачок уплотнения, имеет коническую форму, за ним следует изоэнтропическое течение сжатия с криволинейными характеристиками. При заданном Маха числе набегающего вдоль оси конуса потока геометрическим местом концов радиус-вектора скорости на конусе является так называемая яблоковидная кривая, используемая для графического решения задачи об обтекании конуса. При обтекании конуса под углом атаки в плоскости симметрии на подветренной стороне, как правило, возникает энтропийная особенность (так называемая точка Ферри). В плоскости конических переменных она представляет собой точку, в которую собираются конические проекции поверхностей тока.

К осесимметричным К. т., начинающимся от однородного потока, относятся также внутренние течение в сопле сжатия — канале с двумя цилиндрическими участками разного диаметра и переходной зоной определенной формы, в которой течение сжатия замыкается коническим скачком уплотнения (Буземан, 1942), и течение расширения около сужающейся по определенному закону хвостовой части тела вращения с донным срезом (А. А. Никольский, 1949).

В классе К. т. получены точные решения задач обтекания пирамидальных тел с поперечным сечением в виде звезды или правильного вогнутого многоугольника, которые обладают меньшим волновым сопротивлением, чем круговой конус с той же площадью донного сечения.

Течение около плоского треугольного крыла также относится к классу конических, если скачок уплотнения присоединён к вершине крыла. Если он присоединен также к передним кромкам (крыло со сверхзвуковым передними кромками), то течения на наветренной и подветренной сторонах не взаимодействуют и могут рассчитываться отдельно, в противном случае (крыло с дозвуковыми передними кромками) их нужно рассчитывать совместно (см. Крыла теория).

Наряду с решением ряда задач о К. т. в точной нелинейной постановке широко применяются приближенные методы их изучения. Например, задачи обтекания тонкого тела или треугольного крыла под малым углом атаки решаются в линейной постановке, что вместе со свойством конечности позволяет эффективно использовать методы теории функций комплексного переменного. С помощью нелинейного метода тонкого ударного слоя для гиперзвукового К. т. (см. Гиперзвуковое течение) получены приближенные законы подобия и аналитического решения задач обтекания конуса и треугольного крыла под углом атаки, используемые для оценки аэродинамических характеристик.

Лит.: Франкль Ф. И., Карпович Е. А., Газодинамика тонких тел, М.—Л., 1948; Сборник теоретических работ по аэродинамике, М., 1957; Кочин Н. Е., Кибель И. А., Розе Н. В., Теоретическая гидромеханика, 4 изд., ч. 2, М., 1963; Булах Б. М., Нелинейные конические течения газа М., 1970; Башкин В. А., Треугольные крылья в гиперзвуковом потоке, М., 1984.

В. Н. Голубкин.

“Конкорд” (французское concorde — мир, согласие) — англо-французский сверхзвуковой пассажирский самолёт (см. в статье “Аэроспасьяль”).

“Консолидейтед” (Consolidated Aircraft Corp.) — авиастроительная фирма США. См. в статье “Конвэр”,

консоль (французское console) крыла — часть крыла от его конца до фюзеляжа (см. рис.). Для летательного аппарата типа “летающее крыло” и некоторых других границы К. можно указать лишь условно. У многих самолётов К. — отъёмная часть крыла. В связи с условиями транспортировки или базирования у некоторых летательных аппаратов консоли или их части делаются откидывающимися для уменьшения габаритов летательного аппарата.

Консоль крыла.

Константинов Алексей Кириллович (р. 1919) — советский авиаконструктор. Окончил Воронежский авиационный институт (1944). Конструкторскую деятельность начал под руководством Г. М. Бериева. Принимал участие в создании ряда известных самолётов, в том числе реактивной летающей лодки Р-1 (1951), гидросамолёта М-10 со стреловидным крылом, самолёта-амфибии “Чайка”. В 1968—1990 — главный конструктор ОКБ морского самолётостроения в Таганроге, где под его руководством создан ряд самолётов различного назначения, в том числе поисково-спасательный самолёт-амфибия “Альбатрос”. Государственная премия СССР (1967). Награждён орденами Ленина, Трудового Красного Знамени, “Знак Почёта”, медалями, См. статью Бе. Портрет см. на стр. 280.

А. К. Константинов.

конструирование (от латинского construo — строю, создаю) агрегатов и узлов летательного аппарата — процесс определения формы, размеров, взаимного расположения и параметров частей и элементов конструкции летательного аппарата, его агрегатов и систем, способа их соединения, выбора материалов отдельных элементов и разработки конструкторской документации.

Основная задача К. — при заданных нагрузках, действующих на элемент летательного аппарата, и внешних геологических обводах найти параметры и получить техническую документацию конструкции, имеющей минимальную массу и удовлетворяющей требованиям работоспособности, прочности, долговечности и технологичности в производстве и эксплуатации. При К. широко используется вычислительная техника (см. Автоматизация конструирования).

конструктивно-подобная модель — см. в статье Динамически-подобная модель.

конструктивно-силовая схема — принципиальная схема расположения основных продольных и поперечных силовых элементов конструкции авиационной, а также размещения панелей, поперечных и продольных стыков, на которой указаны способы и типы крепления агрегатов планёра, двигателей, органов управления, грузов, показаны поперечные сечения основных элементов силового набора. К.-с. с. предопределяет способ восприятия и уравновешивания действующих внешних нагрузок и необходимые жесткостные характеристики летательного аппарата. Представленные на рис. 1 К.-с. с. крыльев летательного аппарата отличаются одна от другой числом лонжеронов в кессоне крыла, видом поперечных стыков панелей и направлением нервюр. В К.-с. с. могут быть приняты различнн расположения лонжеронов, вид поперечных и продольных панелей и число панелей (рис. 2, а и 2, б). Выбор К.-с. с. производится из условий обеспечения статической прочности конструкции, требуемых ресурсов, живучести, жёсткостных характеристик конструкции. Рациональной является К.-с. с., которая при минимальной массе материала силовых элементов удовлетворяет перечисленным требованиям. При создании К.-с. с. используются: традиционные решения на основе предшествующего опыта; упрощённые конструктивно-подобные модели (см. Динамически-подобная модель) для определения рациональных способов передачи усилий; метод синтеза К.-с. с., осуществляемый оптимизацией шарнирно-стержневой модели конструкции, по которой можно рассчитать кратчайшие пути передачи нагрузок; метод оптимизации изотропной модели конструкции и выбор на основе анализа напряжённо-деформированного состояния рационального распределения материала силовых элементов. Все эти методы позволяют создать предварительный вариант К.-с. с. Окончательный выбор К.-с. с. производится на стадии эскизного и рабочего проектирования после конструктивных проработок и проведения более точных поверочных расчётов на прочность.

В. И. Бирюк.

Рис. 1. Конструктивно-силовые схемы крыльев пассажирского самолета: а — с нервюрами, расположенными перпендикулярно оси жесткости: б — с нервюрами, расположенными по воздушному потоку.

Рис. 2. Конструктивно-силовые схемы крыльев истребителя с различным расположением лонжеронов.

конструкторская документация — комплекс текстовых и графин, документов, содержащих информацию, необходимую для разработки, производства, испытаний, эксплуатации и ремонта изделий. К. д. — основная часть технической документации, определяющей облик изделия и организующей его производство. Авиационная техника как новая отрасль инженерной деятельности, возникшая в начале XX в., использовала уже сложившийся опыт общего машиностроения и судостроения. Так, силовые элементы планёра, шасси, механизмы управления, силовые установки изображались на чертежах в соответствии с нормами общего машиностроения. Элементы конструкции летательного аппарата, обтекаемые потоком воздуха (фюзеляж, крыло, оперение и т. п.), создавались на основе плазово-шаблонного метода, принятого в судостроении и в дальнейшем усовершенствованного авиационными специалистами.

В СССР К. д. на авиационную технику развивалась совместно с совершенствованием организации инженерного труда в стране в целом. В 1925 были разработаны первые 14 стандартов, устанавливающих основные правила выполнения чертежей, обязательные для всех отраслей промышленности. К концу 40-х гг. эти стандарты были усовершенствованы, дополнены и составили сборник “Чертежи в машиностроении”, состоявший из 22 стандартов. Опыт применения сборника показал, что стандартизация только правил оформления графических документов недостаточна. В 1950 была издана “Система чертёжного хозяйства” — комплекс стандартов, устанавливающих единые правила выполнения чертежей, документов, терминологию, правила учёта, хранения и внесения в К. д. изменений. В 1965—1967 была проведена разработка комплекса стандартов Единой системы конструкторской документации (ЕСКД), завершившаяся его внедрением (начиная с 1971). Комплекс состоял более чем из ста документов следующих категорий: основные положения; правила выполнения чертежей; правила выполнения текстовых документов; правила выполнения схем и условные обозначения; правила выполнения эксплуатационной и ремонтной документации; правила обозначения и внесения изменений в конструкторские документы; правила учёта и хранения К. д.

К. д. на авиационную технику общетехнических видов выполняется по общегосударственным правилам, регламентированным, например, государственными стандартами, устанавливающими порядок разработки изделий и постановки их на серийное производство. Исключение составляют отдельные вопросы, относящиеся к таким сложным комплексным изделиям, как самолёт, вертолёт, двигатель, ракета, которые обеспечены специальными документами, согласованными с заказывающими ведомствами (например. Нормы лётной годности гражданских самолётов).

Развитие методов автоматизированного проектирования и конструирования, внедрение технологического оборудования с числовым программным управлением и широкое применение ЭВМ в области управления производством, в частности в технологической подготовке производства, ставят перед разработчиками ЕСКД новые проблемы, которые решаются и по мере отработки внедряются. Так, например, внедрена система обезличенного обозначения К. д. на основе классификатора ЕСКД, осуществлены разработка и внедрение машинных носителей К. д., проведена более чёткая увязка взаимодействия документов ЕСКД с другими техническими документами и системами (системой автоматизированного проектирования, отраслевой системой технологической подготовки производства и другими).

Современные методы автоматизированного проектирования летательных аппаратов, включающие подготовку К. д. от проектировочной до цеховой, позволяют передавать от разработчика серийному заводу не громоздкие шаблоны, плазы и макеты, а информацию на машинных носителях. Широкое применение ЭВМ даёт возможность обеспечивать весь цикл подготовки производства методами вычислительной техники, что существенно сокращает сроки выполнения работ, снижает их трудоёмкость и повышает качество изделий. Дальнейшее развитие система автоматизированного проектирования в самолётостроении заключается в еще более широком внедрении в труд проектировщиков и конструкторов средств отображения информации, графопостроителей и ЭВМ с большими быстродействием и памятью, что позволяет быстрее и определённее находить оптимальные конструктивные решения.

Л. А. Корнев.

конструкторское бюро химавтоматики — берёт начало от ОКБ-296, образованного в октябре 1941 в г. Бердске Новосибирской области в результате эвакуации туда завода №296 из Харькова и части ОКБ завода №33 из Москвы и их объединения (главным конструктором был назначен С. А. Косберг). В конце 1945 предприятие было перебазировано в Воронеж, с 1946 называется ОКБ-154. В военные и послевоенные годы предприятие специализировалось в области агрегатов и систем топливопитания и регулирования поршневых и газотурбинных авиационных двигателей. В 1954—1958 был создан ряд жидкостных ракетных двигателей (Д154, СК-1, CK-1K) для экспериментальных самолётов А. И. Микояна и А. С. Яковлева, а в последующий период основные разработки были связаны с жидкостными ракетными двигателями для ракет-носителей и космических аппаратов научного и народно-хозяйственного назначения. Указанное название предприятие носит с 1966. Награждено орденами Ленина (1969) и Октябрьской Революции (1976).

конструкция авиационная (от латинского constructio — построение) — совокупность образующих внутреннюю структуру и поверхность летательного аппарата простых технологически законченных изделий — конструктивных элементов, соединённых между собой. К. а. отличают аэродинамически совершенные формы поверхности, тонкостенность оболочки и каркасированность (оболочки подкреплены дискретно расположеными продольными и поперечными силовыми элементами). Тонкостенность, каркасированность, применение лёгких и высокопрочных конструкционных материалов (главным образом сплавов на основе алюминия, а также титановых сплавов и композиционных материалов) обеспечивают главные свойства К. а. — высокую удельную прочность и жёсткость. Несущая способность К. а. определяется ее конструктивно-силовой схемой. Основными полуфабрикатами для К. а. служат листы и специальные профили (стрингеры, пояса), которые присоединяются к листам при помощи болтов, заклёпок, сварки, склеивания, образуя продольный (силовые панели, балки, лонжероны, бимсы) и поперечный (нервюры, шпангоуты) силовой набор (см. рис.). Из элементарных частей собираются основные части конструкции летательного аппарата: фюзеляж (корпус), крыло, оперение, а также органы управления и средства механизации крыла. Можно выделить конструкции монококовые (см. Монокок, Полумонокок), состоящие из набора однородных элементов; моноблочные, у которых наличие усиленных элементов (поясов, бимсов) нарушает однородность; балочные (лонжеронные), общая прочность которых в основном обеспечивается балками (лонжеронами). Обособленное место среди К. а. занимает конструкция шасси, которая имеет высокую удельную прочность главным образом за счет применения в ней высокопрочных легированных сталей. Соединяются основные части К. а. при помощи узлов и деталей, посредством которых стыкуются усиленные силовые элементы. С помощью узлов и переходных конструкций (пилонов, ферм, держателей и т. п.) к основным частям К. а. крепятся двигатели и различные подвесные элементы (дополнительные топливные баки, контейнеры и т. п.). Значительное место в К. а. занимают второстепенные (с точки зрения прочности), так называемые несиловые части (носки и хвостики крыла и оперения, зализы, обтекатели и т. п.), которые, однако, имеют большое значение для обеспечения необходимых аэродинамических характеристик.

Некоторые элементы К. а. по своему назначению должны быть прозрачными для оптических или радиоизлучений (остекление кабин, обтекатели антенн). Эти элементы изготовляют из стекла (оргстекла) или радиопрозрачных материалов.

К К. а. предъявляются высокие и часто противоречивые требования аэродинамики, прочности и жёсткости, ресурса, живучести, минимальной массы, технологичности, простоты эксплуатационного обслуживания и т. п. При создании К. а. выбираются наиболее оптимальные решения с учётом всех предъявляемых к ней требований.

Лит.: Гиммельфарб Л. Л., Основы конструирования в самолетостроении, М.. 1971; Шульженко М. Н., Конструкция самолетов, 3 изд., М., 1971.

С. М. Егер, Г. В. Украинцев.

Элементы авиационной конструкции: 1 — прессованный пояс; 2, 3, 4 — прессованные стрингеры; 5 — гнутый стрингер; 6, 7 — клёпаные панели; 8 — монолитная панель; 9 — сотовая панель; 10 — сечение балки (лонжерона); 11 — сечение бимса.

контактная поверхность — поверхность в поле течения, которая образуется при взаимодействии потоков разнородных несмешивающихся жидкостей, жидкости и газа, газов и отделяет один поток от другого. Движение этих потоков описывается системами дифференциальных уравнений, не совпадающими тождественно между собой. На К. п. вектор поверхностной силы и вектор скорости являются непрерывными функциями, а плотность и другие теплофизические характеристики среды терпят разрыв. К. п. могут возникать при движении как идеальной, так и вязкой жидкости.

В задачах гидростатики идеальной несжимаемой жидкости К. п. представляет собой границу раздела двух жидкостей (рис., а), которая одновременно является поверхностью уровня давления и потенциала массовых сил. Примером образования К. п. при движении газов может служить режим запуска ударной трубы, когда после мгновенного разрыва диафрагмы один газ вытесняется другим; граница раздела газов (рис., б) есть К. п., перпендикулярная вектору скорости. Аналогичные К. п. возникают при движении газожидкостных смесей в трубах на режиме так называемого пробкового течения (рис., в).

В вязкой жидкости К. п., например, при движении смеси жидкостей в круглой трубе на режиме кольцевого течения (рис., г), является границей раздела несмешивающихся жидкостей и совпадает с поверхностью тока. К. п. наблюдается, например, при движении самолета во влажном воздухе (облака, туман), когда на обтекаемых поверхностях образуются сплошные плёнки воды. Граница раздела воздух — вода (рис., д) есть К. п.; она совпадает с поверхностью тока.

В. А. Башкин.

Контактные поверхности: К п. — контактная поверхность; 1 — набегающий поток; 2 — плёнка воды.

контейнер (английское container, от contain — вмещать) в авиации —1) устройство для перевозки штучных грузов в потребительской или облегчённой транспортной таре, а также багажа пассажиров. В зависимости от назначения различают универсальные грузовые и багажные К. (рис. 1, 2). У грузового К. дверные створки составляют заднюю панель. В закрытом положении каждая из них удерживается запорными устройствами. По периметру К. имеются фитинги: верхние предназначены для захвата его стропами грузоподъёмного устройства, нижние для крепления его на автомобилях и железнодорожном подвижном составе. На летательном аппарате К. крепится к силовым элементам днища, гнёздам или полкам. В днище предусмотрены сквозные каналы под захваты автопогрузчика, используемые также на некоторых самолётах для крепления К. Внутри К. имеются устройства для крепления груза при неполной загрузке. У багажного К. передняя и задняя панели являются дверными створками, каждая из которых в закрытом положении удерживается замками. Вместимость грузовых К. от 4,5 до 60 м3, багажных — от 1 до 4,5 м3.

2) Устройство для упаковки и десантирования грузов и техники. Грузовые парашютно-десантные К., предназначенные для упаковки радиостанций, боеприпасов и других грузов массой до 20—30 кг, десантируются вместе с парашютистами. Грузы массой до 1000 кг упаковываются в стандартные парашютно-десантные К. и выбрасываются через хвостовой люк самолёта с помощью вытяжных парашютов или конвейера (см. Десантно-транспортное оборудование), a затеи опускаются на грузовых парашютах. Продовольствие, вещи, некоторые боеприпасы иногда сбрасываются в К. без парашюта; эти К. могут иметь лёгкие амортизаторы, устройства для торможения в воздухе или приспособления, обеспечивающие их приводнение. Для сброса К. без парашюта с бреющего полёта (высота 2—5 м) самолёт над местом сброса обычно переходит из горизонтального полёта на малой скорости в режим набора высоты, и К. выбрасываются через люк. Беспарашютный метод имеет экономические преимущества: отсутствуют дорогостоящие парашютные системы, возрастает полезная нагрузка самолёта, сокращается время подготовки к десантированию и самого десантирования. К., выполненные по форме и в габаритах авиабомб, подвешивались на замках бомбодержателей самолётов. Обтекаемые К. использовались на внешней подвеске на самолётах при десантировании артиллерийский орудий, автомобилей (рис. 3). Первые парашютно-десантные К. были разработаны в 1930—1934 в СССР под руководством П. И. Гроховского. В 1986—1988 К. широко применялись для сбрасывания грузов с самолётов Ил-76 на дрейфующие станции СП-27, -28, -29.

3) Устройство для десантирования группы людей с помощью единой парашютной системы или беспарашютным способом. Идея беспарашютного десантирования людей принадлежит Гроховскому. Его К.-авиабус на 5 человек подвешивался под самолёт и сбрасывался с малой высоты на площадку. К. испытывали при десантировании (1934) Гроховский и И. В. Титов. В 1964 в США разработан проект беспарашютного десантирования людей в надувных конических К. Там же прошёл испытания К. для группового десантирования подразделения с помощью парашютной системы. Разработаны парашютные системы на 1000—5000 кг полезного груза, позволяющие десантировать 10—20 человек одновременно.

4) Сменное подвесное устройство летательного аппарата, предназначенное для размещения дополнительного стрелкового вооружения (пушек) или специального оборудования (радиоэлектронной борьбы, разведывательного и другого).

В. И. Богайчук, Ю. В. Макаров.

Рис. 1. Грузовой контейнер.

Рис. 2. Погрузка багажного контейнера.

Рис. 3. Подвесной контейнер для десантирования автомобиля.

“Континентал Эрлайнс” (Continental Airlines) — авиакомпания США, одна из крупнейших в мире. Осуществляет перевозки внутри страны, а также в страны Западной Европы, Азии и в Мексику. Основана в 1934 под названием “Варни спид лайнс”, современное название с 1937. В 1989 перевезла 35,3 миллионов пассажиров, пассажирооборот 63,6 милиардов пассажиро-км. Авиационный парк — 430 самолётов.

контрастность цели — степени отличия отраженного или излучённого целью сигнала по амплитудным, фазовым и поляризационным свойствам от фона соответствующих по диапазону собственно шумов средств обнаружения, а также естественных и искусственных помех. К. ц. ко интенсивности отражённого или излучённого ею сигнала, как правило, определяет возможности ее обнаружения и захвата, тогда как К. ц. по фазовым и поляризационным характеристикам в основном используется для определения вида и типа цели. Искусственное изменение контрастности летательного аппарата позволяет имитировать ложные цели. См. также Заметность.

контроль бортового оборудования — проводится на стадии изготовления и в процессе эксплуатации. Контроль на стадии изготовления предполагает проверку соответствия бортового оборудования (БО) техническим требованиям. Контроль на различных этапах эксплуатации (подготовка к полёту и полёт, регламентные работы без демонтажа оборудования, профилактические и ремонтно-восстановительные работы) имеет свою специфику и осуществляется наземными и бортовыми средствами. К. б. о. при подготовке к полёту и в полёте проводится для определения технического состояния оборудования, готовности и возможности выполнения режимов работы, определения мест отказов.

По результатам К. б. о. формируются: сигналы на автоматическую или ручную реконфигурацию комплексов БО, соответствующие сообщения экипажу; сигналы о режимах работы, информация об отказах оборудования или недостоверности параметров, выдаваемых в системы индикации, сигнализации, регистрации и документирования; информация о поиске места отказа, замене отказавших систем.

Эксплуатационный контроль выполняется системой автоматизированного бортового контроля, в которую входят: встроенные в аппаратуру средства контроля (ВСК), осуществляющие инструментальный контроль (по обнаружению отказов) и информационный контроль (по обнаружению сбоев и выявлению недостоверной информации), характерный для радиоэлектронного оборудования, построенного с использованием цифровой техники; специальные устройства контроля (например, устройства сравнения, кворум-элементы и т. п.); общекомплексные или общесамолётные бортовые автоматизированные системы контроля на основе вычислительных устройств, формирующие стимулирующие сигналы в системы БО, обрабатывающие и оценивающие получаемые от систем параметры, а также содержащие устройства регистрации.

В комплексах радиоэлектронного оборудования с многорезервированной структурой, имеющих в своём составе центральные цифровые вычислительные машин,ы наряду с ВСК каждой из систем комплекса используются программные средства этих цифровых вычислительных машин, что позволяет с высокой вероятностью оценить достоверность входной информации, а также обеспечить сбор контрольной информации от сопрягаемых систем, её обработку и хранение с выдачей оценки технического состояния комплекса. Например, в первых отечественных цифровых пилотажно-навигационных комплексах для самолётов Ил-96-300 и Ту-204 реализована трёхуровневая иерархическая система средств контроля, в которой нижний уровень составляют ВСК отдельных систем, средний уровень — программные средства цифровых вычислительных машин системы самолётовождения, управления полётом, тягой двигателя, системы предупреждения критических режимов и электронной индикации, верхний уровень — специальная система контроля (сбора и локализации отказов).

Результаты К. б. о. отображаются (на индикаторах, сигнализаторах, экранах, пультах управления и др.) и регистрируются. Для оперативного предъявления на земле обслуживающему персоналу информации об отказах отдельных систем применяются общесамолётные устройства документирования.

К. б. о. при регламентных работах без демонтажа оборудования предназначен для определения его работоспособности с обеспечением поиска механических повреждений систем и кабельных соединений, проверки правильности работы устройств контроля, обнаружения отказов элементов, не охваченных контролем, а также для настройки и регулировки части неэлектронного оборудования; используются средства бортового контроля и частично контрольно-проверочная аппаратура.

К. б. о. при проведении профилактических (для неэлектронного оборудования) и ремонтно-восстановительных работ с демонтажом оборудования осуществляется для углублённой проверки его работоспособности и регулировки, а также для нахождения отказавших элементов с последующей оценкой работоспособности восстановленного БО. На этом этапе применяются наземные автоматизированные системы контроля.

Ю. Е. Кочуров.

контрольно-испытательная станция (КИС) — участок производства, предназначенный для проверки работоспособности и правильности функционального взаимодействия комплекса бортовых систем летательного аппарата с максимальным использованием методов математического и физического моделирования эксплуатационных условий.

Агрегаты и системы проходят стендовые испытания на специальных стендах с применением аналоговых и цифровых вычислительных машин. Для контроля параметров используются электрические датчики (потенциометрические, индуктивные, вибрационно-частотные, тензометрические и другие). Применяются также управляющие вычислительные комплексы. КИС может структурно входить в цех окончательной сборки, летно-испытательную станцию в качестве производственного участка или быть самостоятельным цехом в сборочно-монтажном производстве. В специализированных лабораториях испытываются и контролируются бортовые системы, силовая установка и т. д.

контрольные испытания летательного аппарата (головной серии) — проводятся для проверки полноты реализации перечня доработок и мероприятий устранению дефектов и недостатков, выявленных в процессе государственных испытаний (совместных государственных испытаний), оценки соответствия лётных эксплуатационных данных и показателей, определяющих назначение летательного аппарата, установленному эталону. В последующем, наряду с приёмо-сдаточными испытаниями по сокращённой программе, выполняемыми на заводе-изготовителе, К. и. проводятся периодически для проверки соответствия летательного аппарата и комплектующих его составных частей техническим условиям на поставку. В процессе К. и. подлежат оценке конструктивные, схемные и другие изменения, принятые головным исполнителем с целью улучшения лётно-эксплуатационных данных серийных летательных аппаратов. К. и., как правило, осуществляются в два этапа: исполнитель предварительно проверяет эффективность выполненных мероприятий, затем, при положительной оценке полученных результатов, заказчик контролирует эффективность проведённых на летательном аппарате работ в условиях, близких к условиям реальной эксплуатации, и с учётом технико-экономической рентабельности принимает решение о внедрении летательного аппарата в серию.

Лит. смотри при статье Государственные испытания.

конфигурация (от позднелатинского coniguratio — придание формы, расположение) самолёта — сочетание положений элементов крыла, шасси, наружных подвесок и другие частей и агрегатов самолёта, определяющих его внешние очертания. В зависимости от этапа полёта различают основные К.: взлётная — шасси выпушено, закрылки, предкрылки отклонены на углы, необходимые для взлёта самолёта; полётная — шасси убрано, закрылки и предкрылки не отклонены или отклонены на углы, требуемые условиями полёта по маршруту; предпосадочная — шасси выпущено, закрылки, предкрылки, тормозные щитки отклонены на углы, характерные для захода на посадку; посадочная — шасси выпущено, закрылки, предкрылки, тормозные щитки отклонены на углы, установленные для выполнения посадки. К. определяет лётные качества самолёта на соответствующем этапе полёта.

конфузор (от латинского coniundo — вливаю, распределяю, смешиваю) — профилированный сужающийся канал, в котором дозвуковая скорость жидкости или газа возрастает в результате преобразования потенциальной энергии в кинетическую. В дозвуковой аэродинамической трубе (AT) К. устанавливают перед её рабочей частью (см. рис.) и часто называют коллектором. В сверхзвуковых AT К. является входным участком Лаваля сопла. В первом случае в К. газ ускоряется до рабочих скоростей, во втором — до скорости звука. К. используется и как дозвуковое сопло. Основное требование к К. в AT — обеспечить равномерное поле скорости в выходном сечении, чтобы свести к минимуму зависимость результатов измерений от положения модели по сечению рабочей камеры AT. Одной из главных характеристик К. является степень поджатия {{ε}} — отношение площади входного сечения к площади выходного, которая изменяется в AT различного назначения от 4 до 20. В зависимости от степени поджатия относительная длина К. L/Dвх (L — длина К., Dвх — диаметр его входного сечения) изменяется от ~ 0,8 ({{ε}} = 4) до ~ 1,2 ({{ε}} = 20), а его форму обычно выбирают на основе численного решения уравнений для двух- или трёхмерного течения газа, исходя из условий на входе в К. и требований к потоку газа в рабочей части AT (рабочий диапазон скоростей потока, равномерность распределения скорости газа по сечению и другие).

Конфузоры в дозвуковой (а) и сверхзвуковой (б) аэродинамических трубах: 1 — форкамера; 2 — конфузор; 3 — рабочая часть; 4 — сверхзвуковая часть сопла Лаваля.

копровые испытания — динамические испытания опоры шасси самолёта. При К. и. опору шасси с присоединённой к ней редуцированной массой, выбранной по Нормам прочности, сбрасывают с определенной высоты на специальной установке — копре. Цель К. и. — определение характеристик амортизации опоры и доводка их до расчётных. Испытания проводят для случая поглощения опорой энергии посадочного удара и для проверки стабильности характеристик амортизации при многократных сбросах (ударах). В ходе К. и. воспроизводится действие на опору лобовой нагрузки от раскрутки колеса и подъёмной силы крыла. Оценка характеристик амортизации, опоры производится по диаграмме работы, характеризующей амортизацию шасси (см. рис. 2 к статье Амортизация шасси).

корабельный летательный аппарат — летательный аппарат, базирующийся на авианесущих кораблях. К. л. а. предназначен для перевозки техники и грузов между кораблем и берегом, спасения терпящих бедствие, поражения воздушных надводных и наземных целей, поиска и уничтожения подводных лодок, высадки и поддержки десантов, разведки и целеуказания, радиопротиводействия и т. п. К. л. а. по конструкции в основном подобны соответствующим летательным аппаратам сухопутного базирования. Особенности конструкции К. л. а. обусловлены требованиями совместимости установленных на летательном аппарате и на корабле радиоэлектронных и радиотехнических комплексов, обеспечения взлёта и посадки на палубу и размещения требуемого числа летательных аппаратов на корабле.

Корабельные самолёты по типу взлёта классифицируются на самолёты катапультного, короткого (или трамплинного) и вертикального взлёта.

Самолёт катапультного взлёта выполняет взлёт с помощью катапульты взлётной, обеспечивающей на небольшой дистанции разгон самолёта до требуемой скорости, а посадку совершает с помощью аэрофинишёра, для чего оборудуется тормозным крюком. Эти самолёты (по сравнению с самолётами сухопутного базирования) имеют усиленную носовую стойку шасси, увеличенный ход амортизационных стоек основных опор шасси, относительно короткий фюзеляж, улучшенный обзор из кабины лётчика. Их масса достигает 35 т.

Корабельные самолёты короткого или трамплинного взлёта осуществляют взлёт с разбегом по палубе или с помощью трамплина. Выполнять короткий взлёт без трамплина способны самолёты с подъёмными двигателями и (или) подъёмно-маршевыми двигателями (в том числе корабельные самолёты вертикального взлёта и посадки), а взлетать с трамплина могут и самолёты с обычными силовыми установками (при большой тяговооружённости). Посадка в зависимости от типа самолёта может быть вертикальной с коротким пробегом или с использованием аэрофинишёра. Корабельные самолёты всех типов имеют складывающиеся консоли крыльев для уменьшения их размеров с целью размещения возможно большего числа их на авианесущем корабле.

Корабельные самолёты появились благодаря опытам полётов оборудованых колёсами самолётов с палуб кораблей в 1910—1911. Первый взлёт самолёта с палубы корабля был выполнен 14 ноября 1910 американским лётчиком Ю. Эли с крейсера “Бирмингем”; он же осуществил первую посадку самолёта на палубу крейсера “Пенсильвания” 18 января 1911. В то же время создавались гидросамолёты, приспособленные к взлёту с палубы при помощи катапульты. Посадка осуществлялась на воду вблизи корабля, после чего самолёт поднимали на палубу. Во время Первой мировой войны в русских и английских флотах успешно использовались гидросамолёты такого типа. В 30—40-х гг. на вооружение крейсеров и некоторых линкоров советских и иностранных флотов поступили лёгкие гидросамолёты, предназначенные для разведки и корректировки артиллерийский огня, взлетавшие с палуб с помощью катапульт.

С увеличением скорости полёта самолётов и улучшением другие лётных характеристик оказалось, что колёсные самолёты более эффективны. Они и стали основн типом корабельных самолётов. В период Второй мировой войны корабельные самолёты (истребители, торпедоносцы, бомбардировщики) имели поршневые двигатели. Скорость их полёта достигала 700 км/ч, практический потолок 12 км, дальность полёта 2000 км. В послевоенный период появились реактивные корабельные самолёты: истребители, штурмовики, бомбардировщики, противолодочные, радиолокационного дозора, радиопротиводействия. Корабельные самолёты начала 90-х гг. имеют скорость полёта более 2500 км/ч, практический потолок до 22 км, дальность полёта до 5500 км.

Корабельные вертолёты по принципу работы и внешнему облику подобны вертолётам сухопутного базирования, но в отличие от них имеют складывающиеся лопасти несущего винта, швартовочные узлы, шасси повышеной прочности, способные выдержать нагрузки при посадке на качающуюся палубу.

В. Ф. Павленко.

Корзинщиков Сергей Александрович (1904—1943) — советский лётчик-испытатель. Окончил теоретическую школу авиации в г. Егорьевске (1923), 1-ю военную школу лётчиков (1924) и Высшую военно-авиационную школу воздушной стрельбы и бомбометания в г. Серпухове (1924). Служил лётчиком-истребителем в ВВС (1924—1928), лётчиком-испытателем в Научно-испытательском институте ВВС (1928—1930), затем работал лётчиком-испытателем в Центральном аэрогидродинамическом институте, где проводил лётные испытания многие экспериментальных автожиров (1930—1940), а также опытных самолётов ряда ОКБ, например, истребителя Як-1. Погиб в Великую Отечественную войну. Награждён орденами Ленина, Красной Звезды. Портрет смотри на стр. 288.

С. А. Корзинщиков.

“Кориан Эр” (Korean Air, KAL) — авиакомпания Республики Кореи. Осуществляет перевозки в страны Европы, Азии, Ближнего Востока, а также в Канаду и США. Основана в 1962. В 1989 перевезла 11,3 миллионов пассажиров, пассажирооборот 19,92 миллиардов пассажиро-км. Авиационный парк — 63 самолёта.

“коробочка” — траектория полёта летательного аппарата над аэродромом в ожидании посадки, при заходе на посадку или уходе от аэродрома (при взлёте); имеет в плане вид прямоугольника, стороны которого расположены параллельно и перпендикулярно направлению старта. Различают большую и малую “К.”. Размеры “К.” устанавливаются инструкцией по производству полётов данного аэродрома или аэродромного узла.

Коровушкин Николай Иванович (р. 1921) — советский лётчик-испытатель, полковник, заслуженный лётчик-испытатель СССР (1961). Герой Советского Союза (1957). Окончил авиационное техническое училище (1940), Руставскую военную авиационную школу (1944), Военно-воздушную академию (1955; ныне имени Ю. А. Гагарина), Работал в научно-исследовательском институте ВВС и ОКБ П. О. Сухого. Провёл испытания по запуску турбореактивных двигателей в воздухе, исследовал неустойчивость работы двигателя (помпаж), возможности полёта на динамическом потолке; одним из первых достиг скорости 2000 км/ч. Награждён орденами Ленина, Октябрьской Революции, Красного Знамени, 3 орденами Красной Звезды, медалями.

Н. И. Коровушкин.

Королев Сергей Павлович (1906/1907—1966) — советский учёный и конструктор в области ракетостроения и космонавтики, главный конструктор первых ракет-носителей, искусственных спутников Земли, пилотируемых космических кораблей, основоположник практической космонавтики, академик АН СССР (1958; член-корреспондент 1953), член Президиума АН СССР (1960—1966), дважды Герой Социалистического Труда (1956, 1961). В 1930 окончил Московское высшее техническое училище и одновременно Московскую школу лётчиков-планеристов и пилотов-парителей. С 1930 в ЦКБ при заводе имени В. Р. Менжинского, затем в Центральном аэрогидродинамическом институте. Создал ряд конструкций планеров (“Коктебель”, “Красная Звезда” и другие). В 1932—1933 начальник Группы изучения реактивного движения, в 1933—1938 в Реактивном научно-исследовательском институте (главный инженер, заместитель начальника института, начальник отдела крылатых ракет, начальник группы ракетных аппаратов). Разработал ряд проектов летательных аппаратов, построил ракетопланёр РП-318-1 с жидкостным ракетным двигателем (рис. в таблице XIII). Был необоснованно репрессирован и в 1938—1944 находился в заключении: сначала на Колыме, затем, с 1940, в режимном КБ (ЦКБ-29 НКВД) в бригаде А. Н. Туполева, а в 1942 переведён в режимное КБ В. П. Глушко в Казани, где работал до 1946 заместителем главного конструктора по жидкостным ракетным ускорителям для боевых самолётов. С 1946 главный конструктор ракетно-космической техники. Под руководством К. запущен первый в мире искусственный спутник Земли (1957) и выведен на орбиту первый в мире космический корабль с человеком (Ю. А. Гагарин) на борту (1961). К. как главный конструктор осуществлял общее техническое руководство работами по первым космическим программам и стал инициатором развития ряда прикладных научных направлений, обеспечивших дальнейший прогресс в создании ракет-носителей и космических аппаратов. Золотая медаль имени К. Э. Циолковского АН СССР (1958). Ленинская премия (1957). Награждён 2 орденами Ленина, орденом “Знак Почёта”, медалями. В 1966 АН СССР учредила золотую медаль имени С. П. Королёва. Учреждены стипендии имени С. П. Королёва для студентов высших учебных заведений. В Москве, Житомире и других городах сооружены памятники учёному, созданы мемориальные дома-музеи в Житомире, Москве и на космодроме Байконур, его имя носит Самарский авиационный институт. Именем К. назван талассоид на Луне. Урна с прахом в Кремлёвской стене.

Соч.: Творческое наследие акад. С. П. Королева. Избр. труды и документы, М.. 1980.

Лит.: Асташенков П. Т., Главный конструктор, М., 1975; Из истории советской космонавтики. Сб. памяти академик С. П. Королева, М., 1983; Ветров Г. С., С. П. Королев в авиации. Идеи. Проекты. Конструкции. М., 1988.

С. П. Королёв.

Королевский авиационный научно-исследовательский институт (Royal Aircraft Establishment, RAE) — крупнейшая авиаракетно-космическая научно-исследовательская организация Великобритании. Подчиняется министерству обороны. Ведёт начало от основанного в 1878 аэростатного парка (Balloon Equipment Store), ставшего в 1908 аэростатным заводом (НМ Balloon Factory). С 1911 самолётостроительный завод (Royal Aircraft Factory). Современное название с 1918. Разработка самолётов с 1908. В 1914—1918 создано свыше 500 самолётов 30 типов, многие из которых выпускались большими сериями. В последующие годы институт обеспечивал научно-техническую базу для самолёто- и авиадвигателестроения, авиационного оборудования, после 1945 развернул работы по ракетно-космической тематике. После присоединения в 1983 Национального газотурбинного института (National Gas Turbine Establishment, NOTE, основан в 1944) ведёт научные исследования почти по всем направлениям авиаракетно-космической техники. В середине 80-х гг. институт имел 13 научно-технических отделений, в том числе аэродинамики, материалов и конструкций, силовых установок, управляемого оружия, бортовых систем, лётных испытаний, радионавигационного оборудования, космических систем; более 10 крупных аэродинамических труб.

Королевское авиационное общество (Royal Aeronautical Society, RAeS) Великобритании. Основано в 1866, находится в Лондоне, имеет отделения в Новой Зеландии и ЮАР. В составе общества секции воздушного транспорта, сельскохозяйственной авиации, истории авиации, летчиков-испытателей, ракетной техники, космонавтики и другие. Организует конференции и выставки, проводит научные чтения. Присуждает награды за наиболее значительные работы в области авиации и космонавтики. Издаёт ежемесячный (“Aeronautical Journal”) и ежеквартальный (“Aeronautical Quarterly”) научно-технические журналы.

Коротков Фёдор Амосович (1908—1988) — советский конструктор систем автоматического регулирования авиационных двигателей, доктор технических наук (1965), заслуженный деятель науки и техники РСФСР (1978), Герой Социалистического Труда (1966). Окончил Военную академию механизации и моторизации Рабоче-крестьянской Красной Армии (1934). Работал в авиационной промышленности. В 1940—1984 главный конструктор. Под руководством К. разрабатывались агрегаты и системы топливопитания и регулирования многих авиационных поршневых и газотурбинных двигателей. Ленинская премия (1957), Государственная премия СССР (1949, 1961). Награждён 5 орденами Ленина, орденом Октябрьской Революции, 2 орденами Трудового Красного Знамени, медалями.

Ф. А. Коротков.

корректор высоты (от латинского corrector — исправитель) — устройство на летательном аппарате для формирования сигнала о текущем значении отклонения барометрической высоты полёта самолёта от некоторого её выбранного (опорного) значения. Используется в качестве источника информации для автоматической стабилизации (коррекции — отсюда название) высоты при выполнении некоторых видов манёвров. К. в. состоит из датчика барометрической высоты, устройства запоминания высоты в момент включения К. в. и устройства формирования сигнала разности между запомненной (опорной) и текущей высотами полёта. Может выполняться в виде самостоятельного прибора или входить в состав пилотажно-навигационных систем.

коррозия (от позднелатинского corrosio — разъедание) авиационных материалов. Материалы, используемые в авиационных конструкциях, подвергаются К. вследствие воздействия атмосферы, содержащей агрессивные аэрозоли галоидов, сернистый газ, влагу, а также вследствие накопления агрессивных жидкостей внутри планёра летательного аппарата. В гидросамолётах и других изделиях авиационной техники, которые могут находиться в контакте с водой, К. развивается более интенсивно. В условиях тропиков К. усиливается под воздействием микроорганизмов, для которых питательной средой являются некоторые виды топлива и органических покрытий. К. развивается преимущественно по электрохимическому механизму. В двигателях и других элементах, подвергаемых нагреванию, усиливается окисление, усугубляемое агрессивными продуктами сгорания.

Специфика авиационных конструкций определяет применение в значительных объёмах лёгких сплавов, среди которых на первом месте находятся алюминиевые сплавы. Наиболее опасные виды К. для конструкционных алюминиевых сплавов — расслаивающая К. и коррозионное растрескивание (КР). Высокая прочность сплавов свойственна ориентированным структурам, при наличии которых оба названных вида К. способствуют образованию и развитию трещин и соответствии с этой ориентацией, то есть с раскрытием их по толщине, в высотном направлении. Расслаивающая К. является более распространенным в авиации видом коррозионного поражения. КР выявляется обычно в деталях, изготовленных из толстостенных полуфабрикатов, и лишь в отдельных случаях наблюдается у тонкостенных изделий с рекристаллизованным мало ориентированным зерном (например, в цельнотянутых трубах). В целях предотвращения этих видов К. используют структурно-регламентированное старение, получившее для ряда сплавов название “смягчающего”, поскольку в этом случае оно приводит к снижению механической прочности. Контроль коррозионных свойств проводят измерением электрической проводимости, учитывая корреляцию с распадом твёрдого раствора и сопротивлением КР.

Сочетание различных типов нагружения и изменения характера коррозионного воздействия на стоянках и в полёте может приводить к сопряжённым или последовательным коррозионным поражениям разного вида. Например, у лопастей винтов вертолётов и самолётов первоначально возникшая транс- или межкристаллитная К. сопровождается последующим развитием усталостных или коррозионно-усталостных трещин. Сопротивление таким видам К. в основном определяется составом и структурой сплава и обработкой поверхности.

Детали летательных аппаратов из магниевых сплавов подвергаются в эксплуатации преимущественно “язвенной” К. Интенсивное её развитие в отдельных местах определяется наличием влаги и недостаточной адгезией защитных покрытий. В некоторых магниевых сплавах при наличии постоянно действующих, достаточно высоких растягивающих напряжений может развиваться и КР. Однако более характерно КР для высокопрочных сталей. В стальных деталях КР развивается в результате неправильной термообработки или нарушения режимов сварки, а также вблизи разного рода макро- и микроконцентраторов напряжений. См. также Противокоррозионная защита.

Лит.: Синявский В. С., Вальков В. Д., Будов Г. М., Коррозия и защита алюминиевых сплавав, М., 1979; Коррозия. Справочник, под ред. Л. Л. Шрайера, пер. с англ., М., 1981.

В. С. Синявский.

косая петля — фигура пилотажа: движение летательного аппарата в наклонной плоскости с разворотом на 360{{°}} (см. рис.). При этом большая часть траектории лежит выше точки ввода в фигуру. Условно можно назвать Нестерова петлей в наклонной плоскости.

Косая петля.

Косберг Семён Ариевич (1903—1965) — советский конструктор авиационных и ракетных двигателей, доктор технических наук (1959), Герой Социалистического Труда (1961). Окончил Московский авиационный институт (1930). Работал в Центральном институте авиационного моторостроения (1930—1940). С 1941 главный конструктор КБ. Под руководством К. созданы агрегаты и системы топливопитания и регулирования для многиех авиационных поршневых и газотурбинных двигателей. Разработаны опытные образцы жидкостных ракетных двигателей для самолётов А. И. Микояна и А. С. Яковлева, первый отечественный кислородно-керосиновый жидкостный ракетный двигатель, запускаемый в условиях космического пространства, серийные жидкостные ракетные двигатели последних ступеней ряда ракет-носителей. Ленинская премия (1960). Награждён орденами Ленина, Отечественной войны 1-й степени, Красной Звезды, “Знак Почёта”, медалями. Именем К. назван кратер на Луне.

Для дальнейшего чтения нажмите кнопку