космические скорости первая, вторая, третья — критические значения скорости летательного аппарта в момент его выхода на орбиту, определяющие форму траектории его движения в космическом пространстве. К. с. могут быть вычислены для любого расстояния r от центра Земли, однако наиболее часто К. с. определяются только для поверхности шаровой однородной модели Земли (радиусом 6371 км).

Первая К. с. — минимальная скорость, при которой космический аппарат в гравитационном поле Земли может стать искусственным спутником Земли. Вычисляется по формуле v1 = (GM/r)1/2, где = 398603 км32 (G — постоянная тяготения, М — масса Земли). Первая К. с. называется также круговой скоростью; если в момент выхода на орбиту летательный аппарат имеет скорость, перпендикулярную направлению на центр Земли и равную vI, то его орбита (при отсутствии возмущений) будет круговой. У поверхности Земли первая К. с. имеет значение vI = 7,91 км/с.

Вторая К. с. — минимальная скорость, необходимая для того, чтобы летательный аппарат превратился в искусственный спутник Солнца. Применяются также и другие названия: скорость убегания, скорость ускользания, а также параболическая скорость, так как летательный аппарат с начальной скоростью vII движется по параболической траектории, удаляясь сколь угодно далеко от Земли, оставаясь при этом в пределах Солнечной системы. Скорости меньше параболической называются эллиптическими, больше — гиперболическими. Вторая К. с. определяется по формуле vII = (2GM/r)l/2; у поверхности Земли vII = 11186 км/с.

Третья К. с. — минимальная скорость, необходимая для того, чтобы летательный аппарат, запущенный у Земли, преодолел притяжение Солнца и покинул Солнечную систему. Третья К. с. определяется из условия, что летательный аппарат должен иметь параболическую скорость относительно Солнца, вблизи орбиты Земли эта скорость равна около 42 км/с. Чтобы ее достичь, тело у поверхности Земли должно приобрести скорость vIII = 16,67 км/с.

Понятия К. с. применяются также при анализе движения летательного аппарата в гравитационных полях других планет или их спутников, Солнца.

косой скачок уплотнения — см. в статье Ударная волна.

Костович Огнеслав (Игнатий) Степанович (1851—1916) — изобретатель и конструктор в области воздухоплавания. По национальности серб. В юности жил в г. Пешт (Венгрия). В конце 1870-х гг. переселился в Россию. С 1879 работал над созданием дирижабля. Изыскивал для него новый тип прочного и лёгкого материала, в начале 1880-х гг. изобрёл “арборит” — фанеру высокой прочности. В 1882 организовал паевое Товарищество по постройке воздушного корабля Россия”. Дирижабль не был достроен. К. предполагал использовать для дирижабля сконструированный им бензиновый двигатель, на который в 1888 он подал заявку. Привилегия на двигатель была выдана К. в 1892.

О. С. Костович.

Котельников Глеб Евгеньевич (1872—1944) — русский советский изобретатель, создатель авиационного ранцевого парашюта. Окончил Киевское военное училище (1894). В 1911 создал парашют РК-1 (русский, конструкции Котельникова, 1-я модель). В дальнейшем К. значительно усовершенствовал конструкцию парашюта, создав новые модели, в том числе РК-2 с полумягким ранцем, РК-3 и ряд грузовых парашютов, которые были приняты на вооружение советских ВВС. Награждён орденом Красной Звезды.

Соч.: История одного изобретения. Русский парашют, 2 изд., М.—Л., 1939.

Лит.: Черненко Г. Т., Второе призвание, Л., 1982.

Г. Е. Котельников.

Кочеригин Сергей Александрович (1893—1958) — советский авиаконструктор. Окончил школу военных морских лётчиков в Нижнем Новгороде (1919), Военно-воздушную академию Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1926; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского). Возглавлял конструкторскую бригаду в ЦКБ, был главным конструктором самолётостроительных заводов. Под его руководством разработаны и построены самолёты-штурмовики, разведчики, бомбардировщики, двухместный истребитель ДИ-6 (совместно с В. П. Яценко), выпускавшийся серийно и принимавший участие в боях на р. Халхин-Гол. Награждён орденом Красной Звезды, медалями.

С. А. Кочеригин.

Кочетков Андрей Григорьевич (1908—1990) — советский лётчик-испытатель, полковник, заслуженный лётчик-испытатель СССР (1959), Герой Советского Союза (1958). Окончил Качинскую военную авиационную школу (1929), Военно-воздушную академию Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1938; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского), Работал в научно-исследовательском институт ВВС и ОКБ С. А. Лавочкина и П. О. Сухого. Испытывал опытные самолёты МиГ-3, МнГ-9, Як-3, ЛаГГ-3, Ла-5, Ла-15, Ла-200, Ла-250, Су-7 и другие, а также проводил испытания самолётов на прочность, штопор и флаттер. Награждён 2 орденами Ленина, 3 орденами Красного Знамени, орденом Отечественной войны 1-й степени, орденом Отечественной войны 2-й степени, 2 орденами Красной Звезды, медалями.

А. Г. Кочетков.

Кочин Николай Евграфович (1901—1944) — советский учёный в области механики, математики и геофизики, одни из создателей современной динамической метеорологии, академик АН СССР (1939). Окончил Петроградский университет (1923). Преподавал в Ленинградском (1924—1934) и Московском (1938—1944) университетах. Работал в Математическом институте АН СССР (1932—1939), одновременно в Центральном аэрогидродинамическом институте (1936—1938), в Институте механики АН СССР (1939—44). Основные труды в области гидро- и аэродинамики, математики и теоретической механики. Дал решение уравнений для движения сжимаемой жидкости на вращающейся Земле. Исследования К. сильных разрывов (ударных волн) в сжимаемой жидкости имели большое значение для развития газовой динамики. Впервые дал строгое решение задачи для крыла конечного размаха.

Соч.: Собр. сочинен. т. 1—2, М.—Л., 1949.

Н. Е. Кочин.

Кошиц Дмитрий Александрович (1902—1944) — военный лётчик, планерист, испытатель автожиров, подполковник. Учился в строительном техникуме. В 1919 добровольно вступил в Красную Армию. Учился (1923—1925) в школе военных лётчиков, Серпуховской высшей школе воздушного боя и бомбометания (“Стрельбом”). Был начальником штаба авиаэскадрильи (1926—1927), инструктором в авиабригаде научно-исследовательского института ВВС (1932—1937). В 30-х гг. испытывал советские автожиры КАСКР-2, ЦАГИ А-14, в 1940 — первый военный автожир А-7. В полётах на планерах установил рекорды: в 1929 высоты (1520 м), в 1933 — дальности буксировочного полёта с пассажиром на планёре Ш-5 за самолётом Р-5 (5025 км), в 1935 — продолжительности полёта (11 ч 30 мин) и высоты полёта (525 м) с двумя пассажирами. В 1932 совершил на авиетке Г-8 большой кольцевой агитперелёт по 20 городам страны протяженностью 5200 км. Во время Великой Отечественной войны К. — лётчик-инспектор авиации. Погиб в авиакатастрофе. Награждён орденом Красной Звезды, медалями.

Д. А. Кошиц.

коэффициент аккомодации — безразмерный параметр, при помощи которого макроскопические характеристики потока молекул газа, отражённых от элемента поверхности тела, выражаются через соответствующие характеристики налетающих молекул. В разреженных газов динамике К. а. используются для аппроксимации функции распределения по скоростям отражённых молекул. На практике применяются эмпирический К. а. энергии и нормального (перпендикулярного поверхности) и тангенциального (касательного ей) импульсов, замыкающие задачу аэродинамического расчёта (в том числе расчёта аэродинамического нагревания) “выпуклых” летательных аппаратов в свободномолекулярном течении.

коэффициент баллистический — см. Баллистический коэффициент.

коэффициент безопасности f — используется при определении расчётных нагрузок на летательный аппарат Рp по значениям эксплуатационных максимальных нагрузок Рэ и равен: f = Pрэ .К. б. вводится для обеспечения высокого уровня надёжности летательного аппарата по условиям статической прочности с учётом возможных разбросов внешних нагрузок и прочностных характеристик конструкции летательного аппарата. Значения К. б. задаются в Нормах прочности, в авиастроении приняты типовые значения f от 1,5 до 2.

коэффициент восстановления полного давления — отношение полных давлений в двух рассматриваемых сечениях элементарной трубки тока: v = p01/p02; при этом поток направлен от сечения 1 к сечению 2. Отличие v от 1 физически связано с необратимыми процессами перехода кинетической энергии в теплоту на рассматриваемом участке. Используется при исследовании стационарных течений идеальной жидкости в отсутствие массовых сил (газодинамический расчёт газовых машин, турбореактивных двигателей и т. п.), характеризует, например, эффективность воздухозаборников воздушно-реактивных двигателей. К. в. п. д. необходим также для определения поля скоростей на основе экспериментальных данных по распределению давления.

В установившемся потоке идеальной несжимаемой жидкости и в изоэнтропическом потоке сжимаемой жидкости вдоль линии тока полное давление постоянно и, следовательно, v = l. Если в элементарной струйке тока сверхзвуковой поток совершенного газа тормозится, проходя через прямой скачок уплотнения с Маха числом М перед ним, то К. в. п. д. вычисляется по формуле Рэлея

{{формула}}

{{формула}}

где {{γ}} — показатель адиабаты. Если вектор скорости потока образует с фронтом ударной волны угол {{θ}}ω(косой скачок уплотнения), то v можно рассчитать по этой же формуле, если в ней М заменить на Мn = Msin{{θ}}ω). При пересечении элементарной струйкой тока системы из N ударных волн суммарный К. в. п. д. определяется произведением v{{Σ}} = {{П}}ni∞1v1, где vi — К. в. п. д. в i-й ударной волне. При движении несовершенного идеального газа К. в. п. д. для ударной волны определяется путём чиссенного интегрирования уравнений газовой динамики, записанных в интегральной форме.

В. А. Башкин.

коэффициент давления в аэродинамике — безразмерная величина cp, равная разности местного давления p я давления в невозмущённом потоке р отнесённой к скоростному напору невозмущённого потока:

{{ формула }}

где {{ρ}}, V — плотность и скорость газа невозмущённого потока (на бесконечности).

коэффициент избытка воздуха — отношение действительного количества воздуха в горючей смеси к теоретически необходимому для ее полного сгорания (см. Стехиометрический состав горючей смеси). В зависимости от типа двигателя и режима его работы К. и. в. в камере сгорания может изменяться от значений меньше единицы до нескольких десятков.

коэффициент надёжности {{η}} — применяется для определения ресурса конструкции tрес по результатам испытаний или расчётов долговечности конструкции tр:{{η}} = tр/tрес. К. н. вводится для обеспечения высокого уровня надёжности летательного аппарата по условиям сопротивления усталости и с учётом возможных разбросов характеристик этого сопротивления, достоверности данных о повторяемости внешних нагрузок, скорости распространения трещин и характерных особенностей мест разрушений, а также неточностей испытаний или расчётов.

коэффициент пассажирозагрузки — показатель занятости пассажирских мест в самолёте (в процентах), характеризующий интенсивность использования воздушных судов гражданской авиации. Для конкретного рейса определяется как отношение фактически выполненного объема работы (в пассажиро-км) к предельно возможному, равному произведению числа установленных на летательном аппарате пассажирских кресел на тарифное расстояние данного рейса. В статистической отчётности широко используются среднегодовые значения К. п. для парка гражданской авиации отдельных стран или мирового парка в целом. В 1989 К. п. в странах-участницах Международной организации гражданской авиации составил 68%. В СССР среднегодовой К. п. на воздушном транспорте достигал 80% и более.

коэффициент полезного действия воздушного винта — отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата, к мощности двигателя N: {{η}} = PV/N (Р — тяга винта, V — поступательная скорость летательного аппарата).

При таких скоростях полёта, когда на лопастях воздушного винта не возникает местных сверхзвуковых течений, основные потери связаны с индуктивным сопротивлением (индуктивные потери) и профильным сопротивлением. Индуктивные потери минимальны, если винт создаёт за собой поле скоростей, совпадающее с описываемой винтом твёрдой винтовой поверхностью. смещающейся с пост, скоростью в направлении своей оси. Такое или близкое к нему поле скоростей обеспечивается соответствующим выбором распределения циркуляции скорости вдоль лопасти (то есть выбором формы лопасти).

При больших дозвуковых скоростях полёта, когда на лопасти образуются области со сверхзвуковым течением, замыкаемые скачками уплотнений, существенным становится волновое сопротивление (волновые потери). Эффективным способом уменьшения волновых потерь является использование профилей с возможно большими значениями критических Маха чисел и сверхкритических профилей, а также отгиб лопасти назад (саблевидные лопасти) аналогично стреловидному крылу. Отгиб вперёд (обратная стреловидность) здесь эффекта не даёт вследствие роста относительной скорости обтекания с увеличением радиуса и смешения замыкающего скачка уплотнения к задней кромке. С ростом числа Маха полёта {{η}} воздушных винтов с широкими гонкими саблевидными лопастями (винтовентиляторов) уменьшается значительно меньше, чем {{η}} винтов с обычными узкими лопастями, хотя индуктивные потери одинаковы.

Г. И. Майкапар.

коэффициент полезного действия компрессора, турбины — отношение полезной работы к затраченной (располагаемой) в предположении отсутствия теплообмена потока с внешней средой. Наиболее широко распространены следующие коэффициенты полезного действия по параметрам заторможенного потока: изоэнтропический {{η}}*н.н. и политропический {{η}}*п.к. компрессора и {{η}}*т неохлаждаемой турбины:

{{ формула }}

{{ формула }}

{{ формула }}

где i*в1, i*г1 — начальные значения удельной энтальпии воздуха и газа, Дж/кг; s*п1 — начальное значение удельной изобарной энтропии воздуха, Дж/(кг*К); i*п.к., i*г.т., s*в.к. — их конечные значения при действительном процессе; i*г.и.т.. — конечные значения удельной энтальпии воздуха и газа при изоэнтропическом процессе и действительном давлении; {{π}}*к —степень повышения полного давления воздуха а компрессоре; R — удельная газовая постоянная воздуха, Дж/(кг*К). При одинаковом аэродинамическом совершенстве в компрессоре с ростом {{π}}*к значение {{η}}*и.к. уменьшается, а значение {{η}}*п.к. сохраняется неизменным; в турбине с ростом степени понижения полного давления газа {{π}}*т значение {{η}}*т. возрастает. Для охлаждаемой турбины применяется эффективный коэффициент полезного действия ступени {{η}}*т.эф.. В случае использования охлаждающего воздуха, подводимого в рабочее колесо для увеличения работы турбины.

{{формула}}

где Gг,Gо.с.а.,Gв.р.к. — массовый расход газа, охлаждающего воздуха в сопловом аппарате и в рабочем колесе, кг/с; i*г1, i*s1 — удельная энтальпия газа и воздуха при входе; i*см.с.а. — удельная энтальпия смеси газа и воздуха за сопловым аппаратом; i*см. т, i*см.н.т — действительная удельная энтальпия смеси за турбиной и при изоэнтропическом расширении.

В. М. Микартичан.

коэффициент полезного действия реактивного двигателя — безразмерная величина, характеризующая степени совершенства реактивного двигателя как тепловой машины и реактивного движителя. Различают полный, эффективный и полётный (тяговый) К. п. д. р. д.

Полный коэффициент полезного действия {{η}}0, выражается отношением полезной тяговой мощности двигателя к затраченной в единицу времени термохимической и кинетической энергии топлива, находящегося на борту летательного аппарата. Пренебрегая нагревом топлива в баках и системах вне двигателя, получим {{η}}0 = PV/[Gт(Hu + V2/2)], где Р — реактивная тяга двигателя, V — скорость полёта, Gт — расход топлива (горючего и окислителя в ракетных двигателях) во всех камерах сгорания двигателя в единицу времени, Hu — теплота сгорания 1 кг топлива (в воздушно-реактивном двигателе) или 1 кг смеси горючего и окислителя (в ракетном двигателе). Полный коэффициент полезного действия равен произведению эффективного и полётного коэффициент полезного действия ({{η}}э и {{η}}п), характеризующих соответственно термогазодинамическое совершенство двигателя и его совершенство как движителя: {{η}}0 = {{η}}э{{η}}п.

У воздушно-реактивного двигателя эффективный коэффициент полезного действия определяется отношением создаваемой двигателем располагаемой работы (в виде разности кинетической энергий вытекающих из сопел газов и набегающего потока воздуха) к затраченной энергии топлива. У воздушно-реактивного двигателя простейших одноконтурных схем (турбореактивный двигатель, прямоточный воздушно-реактивный двигатель) этот коэффициент полезного действия близок к термическому коэффициенту полезного действия термодинамического цикла и сохраняет характер его зависимости от основных параметров цикла. У турбореактивного двухконтурного двигателя {{η}}э несколько снижается из-за потерь при обмене энергий между контурами, однако полный коэффициент полезного действия турбореактивного двухконтурного двигателя на малых скоростях растёт в связи с ростом полётного коэффициента полезного действия. У двигателей с форсажными камерами сгорания при малых V значение {{η}}э уменьшается вследствие того, что подвод топлива в форсажные камеры осуществляется при более низком давлении воздуха однако при высоких сверхзвуковых скоростях полёта {{η}}э значительно увеличивается из-за существенного повышения давления в двигателе вследствие динамического сжатия воздуха.

Полётный коэффициент полезного действия определяется отношением полезной тяговой мощности двигателя к создаваемой им располагаемой мощности. Этот коэффициент полезного действия определяется приближённой формулой Б. С. Стечкина для двигателей с единым реактивным соплом: {{η}}п = 2{{V}}/1 + {{V}}), где {{V}} = V/ωc — отношение скоростей полёта и истечения газов из реактивного сопла (реально {{V}} < 1, {{η}}п < 1). Полётный коэффициент полезного действия воздушно-реактивного двигателя может быть увеличен лишь при увеличении{{V}}, то есть уменьшением скорости истечения газов (например, при росте степени двухконтурности m в турбореактивном двухконтурном двигателе) или увеличением скорости полёта летательного аппарата.

У ракетных двигателей {{η}}э определяется как отношение располагаемой работы (в виде суммы кинетической энергий вытекающих из сопла газов и топлива на борту летящего летательного аппарата) к полной энергии топлива, то есть {{η}}э = (ω2с + V2)/2(Hu + V2/2). Полётный коэффициент полезного действия ракетного двигателя выражается формулой {{η}}п = 2{{V}}/(1 + {{V}}2).

Зависимости {{η}}п от {{V}}для воздушно-реактивного двигателя (сплошная линия) и ракетного двигателя (штриховая линия) и области их работы показаны на рис. 1.

У турбовинтовых двигателей {{η}}э определяется отношением эквивалентной мощности Ne к затраченной энергии топлива: {{η}}э = Ne/(GтHu). Полётный коэффициент полезного действия турбовинтовых двигателей выражается сложной формулой, его значение близко к значению коэффициента полезного действия винта {{η}}в = PвV/Nв, где Рв, Nв — тяга винта и мощность на его валу.

Воздушно-реактивные двигатели к концу 80-х гг. достигли высокого термогазодинамического совершенства. Дозвуковые турбореактивные двухконтурные двигатели при высокой степени повышения давления а цикле (до 30 только в компрессорах и до 50 с учётом динамического сжатия в полёте при Маха числе полёта М{{}} = 0,8—0,85) имеют {{η}}э = 0,42—0,43, что превышает коэффициенты полезного действия, достигаемые в других транспортных тепловых машинах с простым рабочим циклом. Значение {{η}}э у современных турбореактивных двигателей с форсажной камерой и турбореактивных двухконтурных двигателей с форсажной камерой при высоких скоростях полёта (М{{}} = 2—3) равно 0,4—0,5. Такие значения эффективного коэффициентa полезного действия при высоких полётных коэффициентов полезного действия обеспечивают современным воздушно-реактивным двигателям высокие значения полного коэффициента полезного действия (рис. 2), который имеет тенденцию к росту при увеличении скорости полёта летательного аппарата (при V = 0 всегда {{η}}0 = 0).

Лит.: Теория воздушно-реактивных двигателей, под ред. С. М. Шляхтенко, М., 1975; Теория двухконтурных турбореактивных двигателей, под ред. С. А. Шляхтенко, В. А. Сосунова, М., 1979.

В. А. Сосунов.

Рис 1. Полетный коэффициент полезного действия: 1 — турбореактивного двигателя с форсажной камерой и турбореактивного двухконтурного двигателя с форсажной камерой (М{{}} = 2—2,5; Pmax1; 2 — турбореактивного двухконтурного двигателя с m = 4—8 (M{{}} = 0,8—0,85); 3 — жидкостного ракетного двигателя баллистических и космических ракет при Vmax.

Рис 2. Полный коэффициент полезного действия воздушно-реактивных двигателей различных типов в зависимости от крейсерской скорости полета.

коэффициент полноты сгорания топлива — отношение количества теплоты, фактически выделившейся при сгорании 1 кг топлива, к его теплоте сгорания. К. п. с. т., зависящий от многих конструктивных и режимных факторов камеры сгорания и двигателя, достигает, например, в основной камере сгорания на взлётном и максимальом режимах работы газотурбинного двигателя около 100%; его пониженное значение на режиме малого газа (вследствие низких значений температуры и давления воздуха, входящего в камеру) вызывает выброс вредных веществ (оксида углерода и углеводородов).

коэффициент потерь полного давления — отношение разности полных давлений (p*1-p*2) воздуха (газа) соответственно в сечениях на входе в рассматриваемый элемент проточной части двигателя (p*1) и на выходе из него (p*2) к полному давлению p*1 на входе в данный элемент: {{δ}} = (p*1- p*2)/ p*1; характеризует газодинамические потери в элементах (узлах) воздушно-реактивного двигателя, в которых к воздуху (газу) не подводится и от него не отводится механическая работа. Чаще всего используется для оценки потерь полного давления в основных камерах сгорания газотурбинного двигателя коэффициент {{δ}}к.с. = (p*к- p*т)/ p*к, где p*к и p*т —полные давления соответственно за компрессором и перед турбиной, а в форсажных камерах сгорания турбореактивного двигателя с форсажной камерой — коэффициент {{δ}}ф.к. = (p*n- p*ф)/ p*т, где p*т и p*ф — полные давления соответственно за турбиной и за форсажной камерой. Коэффициент потерь полного давления связан с более распространённым при оценке потерь полного давления в элементах проточной части воздушно-реактивного двигателя коэффициентом восстановления полного давления v = p*2/ p*1 следующей зависимостью: {{δ}} = 1-v.

Лит.: Теория воздушно-реактивных двигателей, под ред. С. М. Шляхтенко, М., 1975; Абрамович Г. Н. Прикладная газовая динамика, 5 изд., ч. 1—2, М., 1991.

В. И. Бакулев.

коэффициенты аэродинамические — см. Аэродинамические коэффициенты.

Кравченко Григорий Пантелеевич (1912—1943) — советский лётчик, генерал-лейтенант авиации (1940), дважды Герой Советского Союза (1939). В Красной Армии с 1931. Окончил Качинскую военную авиационную школу имени А. Ф. Мясникова (1932), курсы усовершенствования комсостава при Академии Генштаба (1941). Участник боёв в районе р. Халхин-Гол, советско-финляндской и Великой Отечественной войн. В Великую Отечественную войну был командующим ВВС армии, командиром авиадивизии. Погиб в бою. Награждён орденом Ленина, 2 орденами Красного Знамени, орденами Отечественной войны 2-й степени, “Знак Почёта”. Бронзовый бюст в селе Сулимовка Днепропетровской области. Урна с прахом в Кремлёвской стене.

Лит.: Яковлев В. П., Устюжанин Г. П.. Генерал Кравченко, Челябинск, 1976.

Г. П. Кравченко.

Красильщиков Пётр Петрович (1903—1965) — советский учёный в области аэродинамики, профессор (1948), доктор технических наук (1949), заслуженный деятель науки и техники РСФСР (1964). Окончил Московский государственный университет (1936). Работал в Центральном аэрогидродинамическом институте (1926—1965). Преподавал в ряде вузов Москвы. Основные труды в области аэродинамики крыльев. Разработал ряд крыловых профилей (в конце 20-х гг. профили P-II для учебных самолётов малых скоростей и планеров, применяющиеся до сих пор; профили 1-А, 1-Б — для первых советских реактивных истребителей С. А. Лавочкина, А. И. Микояна, П. О. Сухого, А. С. Яковлева), а также механизацию крыла с управлением пограничным слоем путём его отсоса и сдува с отклонённого закрылка. Ленинская премия (1961), Государственная премия СССР (1946, 1947). Награждён орденом Отечественной войны 1-й степени, 2 орденами Трудового Красного Знамени, медалями.

Соч.: Практическая аэродинамика крыла, М., 1973 (Труды ЦАГИ, в. 1459).

П. П. Красильщиков.

“Красный лётчик” — советский авиастроительное предприятие. Берёт начало от Петроградского государственного соединённого авиационного завода, образованного в конце 1920 в результате объединения бывших воздухоплавательного отделения Русско-Балтийского вагонного завода, “Первого Российского товарищества воздухоплавания С. С. Щетинин и К{{°}}”, завода В. А. Лебедева (позднее к ним присоединился завод воздушных винтов “Интеграл”). С 1922 называется Государственный авиационный завод №3 “К. л.”, с 1927 — завод №23. В 1922 — 24 завод выпускал гидросамолёты “Теллье”, М-9, М-23, М-24, М-24бис, в 1923—1931 учебный самолёт У-1 (МУ-1), в 1926—1929 истребители И-2, И-2бис. В 1925—1927 в составе завода работал Отдел морского опытного самолётостроения (ОМОС) и строились опытные самолёты “Укрвоздухпуть”, МРЛ-l, МР-2, -3, МУР-1, -2, РОМ-1, -2 МУ-2 (см. Григоровича самолёты), а в 1930—1932 — МУ-3, Ш-2. В 1928—130 выпускался учебный (так называемый “переходный:”) самолет П-2, а с 1929 завод стал основным поставщиком самолёта У-2. В предвоенные годы строился также самолёт УТ-2. В июле — августе 1941 завод №23 эвакуирован из Ленинграда в Новосибирск и частично в Казань. В Казани было продолжено производство У-2 (По-2). В разные годы на заводе работали Д. П. Григорович, А. С. Москалёв, В. Б. Шавров, О. К. Антонов, Г. И. Бакшаев.

Красовский Александр Аркадьевич (р. 1921) — советский учёный в области систем автоматического управления, член-корреспондент АН СССР (1968), генерал-майор, Герой Социалистического Труда (1981), Окончил Военно-воздушную академию Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1945; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского); работает таи же (профессор с 1954). Основные труды по теории автоматического управления полётом летательного аппарата. Государственная премия СССР (1976). Награждён орденами Ленина, Отечественной войны 1-й степени, Трудового Красного Знамени, Красной Звезды, “Знак Почёта”, медалями. Портрет смотри на стр. 290.

Соч.: Динамика непрерывных самонастраивающихся систем. М., 1963; Системы автоматического управления полетом и их аналитическое конструирование, М., 1973; Теория корреляционно-экстремальных навигационных систем. М., 1979.

А. А. Красовский.

Красовский Николай Николаевич (р. 1924) — советский учёный в области математики и механики, академик АН СССР (1968; член-корреспондент 1964), Герой Социалистического Труда (1974). После окончания Уральского политехнического института (1949) работал там же [профессор (1957), заведующий кафедрой]. В 1959—1970 заведующий кафедрой Уральского государственного университета, в 1970—1977 директор Института математики и механики Уральского научного центра АН СССР, затем член Президиума Уральского отделения АН СССР. Фундаментальные труды по теории устойчивости движения, математической теории управления. Ленинская премия (1976), Государственная премия СССР (1984). Награждён 2 орденами Ленина, орденами Октябрьской Революции. Трудового Красного Знамени, медалями.

Соч.: Некоторые задачи теории устойчивости движения, М., 1959; Теория управления движением. Линейные системы, М„ 1968; Управление динамической системой, М., 1985.

Н. Н. Красовский.

Красовский Степан Акимович (1897—1983) — советский военачальник, маршал авиации (1959), Герой Советского Союза (1945), профессор (1966). В Советской Армии с 1918. Окончил курсы усовершенствования начальников состава ВВС (1927), Военно-воздушную академию Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1936; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского). Участник Гражданской, советско-финляндской и Великой Отечественной войн. В 1941—1945 командовал ВВС армии, фронта, воздушной армией. После войны командующий ВВС ряда военных округов, в 1956—1968 начальник Военно-воздушной академии имени Ю. А. Гагарина, с 1968 в Группе генеральных инспекторов МО СССР. Награждён 6 орденами Ленина, орденом Октябрьской Революции, 4 орденами Красного Знамени, орденами Суворова 1-й и 2-й степени, Кутузова 1-й степени. Богдана Хмельницкого 1-й степени, Красной Звезды, “За службу Родине в Вооружённых Силах СССР” 3-й степени, медалями, а также иностранными орденами.

С. А. Красовский.

крейсерская скорость — скорость летательного аппарата на крейсерском режиме полёта. В зависимости от задачи полёта различают К. с. минимального времени полёта (К. с. максимальна), К. с. максимальной дальности полёта (расход топлива на 1 км пути минимален), К. с. экономическую (себестоимость перевозок минимальна) и К. с. максимальной продолжительности полёта (часовой расход топлива минимален).

крейсерский режим полёта — режим полёта летательного аппарата с постоянной скоростью. Основной режим полёта на дальность. Высота при К. р. может выдерживаться постоянной в процессе полёта или увеличиваться вследствие уменьшения массы самолёта по мере расходования топлива. К. р. определяется двумя параметрами — скоростью и высотой (или коэффициентом подъёмной силы на К. р.).

крен (от французского car{{é}}nе — киль; подводная часть судна или от голландского krengen — класть судно на бок) — отклонение плоскости симметрии летательного аппарата от местной вертикали к земной поверхности. Характеризуется углом К. и скоростью К. Угол крена {{γ}} — угол между поперечной осью OZ и осью OZ{{m}} нормальной системы координат (см. Системы координат), смещённой в положение, при котором угол рыскания равен нулю. Угол К. считается положительным, когда ось OZg совмещается с осью OZ поворотом вокруг оси ОХ по часовой стрелке, если смотреть вдоль этой оси. При определении ориентации скоростной системы координат (СК) относительно нормальной используется скоростной угол крена {{γ}}a, определяемый аналогично углу {{γ}}, но вместо оси OZ рассматривается боковая ось OZа. При описании движения ракет используют аэродинамический угол крена {{φ}}n, определяемый как угол между осью OY и осью OYn CK, связанной с пространственным углом атаки.

Креном летательного аппарата называется также движение, при котором происходит изменение угла крена; характеризуется скоростью крена {{ω}}x — проекцией угловой скорости летательного аппарата на его продольную ось. Скорость К. считается положительной при вращении летательного аппарата вокруг оси ОХ по часовой стрелке. При анализе К. часто используют безразмерную скорость К. —{{ω}}x, связанную со скоростью К. соотношением {{ω}} = {{ω}}xl/2V, где l — размах крыла летательного аппарата, V — скорость полета. Безразмерную скорость К. называют также углом винтовой линии, описываемой концом крыла.

Манёвры К. используются, например, при разворотах, при выполнении фигур пилотажа, при заходе на посадку для парирования смещения траектории летательного аппарата относительно оси взлётно-посадочной полосы. Управление К. осуществляется органами поперечного управления (см. Органы управления). Самопроизвольный К. летательного аппарата называют валёжкой. См. также Боковое движение.

М. А. Ерусалимский.

кресло пассажирское — предназначается для комфортабельного, удобного и безопасного пребывания пассажиров в полёте; элемент интерьера пассажирского салона. На первых пассажирских самолётах 1913—1914 использовались лёгкие сиденья и плетёные К. Современные К. оборудуются отклоняющимися спинками, столиками, средствами индивидуального обслуживания и развлечения, а также ремнями безопасности и средствами спасения. В зависимости от уровня комфорта пассажирского салонов различают К. первого, туристского, экономического классов и так называемого бизнес-класса. Для широкофюзеллжных самолётов кресла туристского класса модифицированы. Сохраняя габаритные размеры блоков унифицированы К. туристского класса, новые К. отличаются от них установкой на каждом пассажирским месте специального оборудования: кнопки вызова бортпроводников, пульта для прослушивания через индивидуальные наушники музыкальных программ и другие. В салонах бизнес-класса размещаются К. бизнес-класса, удобные и комфортабельные, незначительно уступающие К. первого класса по габаритным размерам и декоративной отделке. Шаг установки, а также класс К. зависят от продолжительности полёта:

Е. Н. Соколовская.

Продолжительность полёта

Класс кресел

Шаг установки кресел (мм)

До 2 ч

Экономический

750-780

До 4 ч

 

 

810

До 6 ч

То же

870

Св. 6 ч

Туристский повышенного комфорта

870

То же

Первый

960-1020

“-“

Бизнес-класс

900

 

Кретов Степан Иванович (1919—1975) — совеский лётчик, полковник, дважды Герой Советского Союза (1944, 1948). В Советской Армии с 1939. Окончил Балашовскую военную авиационную школу (1940), Высшую офицерскую лётно-тактическую школу (1950), Военно-воздушную академию (1958; ныне имени Ю. А. Гагарина). Участник Великой Отечественной войны. В ходе войны был лётчиком, командиром звена, заместителем командира эскадрильи дальнебомбардировочного авиаполка. Совершил 400 боевых вылетов; экипаж К. сбил в воздухе 10 вражеских самолётов. После войны на командных и штабных должностях и преподавательской работе. Награждён 2 орденами Ленина, 2 орденами Красного Знамени, орденом Краской Звезды, медалями. Бронзовый бюст в Минусинске Красноярского края.

Лит.: Швецов А., В небе — Кретов, в кн.; Когда страна быть прикажет героем..., Красноярск, 1974.

С. И. Кретов.

кривизна профиля. Под кривизной профиля крыла обычно понимают кривизну его средний линии. К. п. один из основных геометричских параметров несимметричного профиля, классическим примером которого является Жуковского профиль (со средней линией, близкой к дуге окружности). К. п. принято характеризовать вогнутостью профиля, определяемой стрелой прогиба средний линии (см. рис. к статье Профиль крыла), то есть расстоянием по вертикали от хорды до средней линии; К. п. считается положительной, если средний линия лежит выше хорды. Вогнутость профиля изменяется по хорде и может даже менять знак для профилей с S-образной средний линией. Максимальная относительная вогнутость профиля {{f}}max равна отношению максимальной стрелы прогиба fmах средней линии к хорде b профиля: {{f}}max = fmax/b.

При дозвуковых скоростях полёта положительная вогнутость профиля создаёт не зависящие от угла атаки приращения коэффициента подъёмной силы cy и момента тангажа mz, (см. Аэродинамические коэффициенты). В несжимаемой жидкости для тонкого профиля с параболической средний линией эти приращения равны {{Δ}}сya = 4{{π}}fmax и {{Δ}}mza = -{{π}}{{f}}max. Эффект увеличения подъемной силы при наличии положительной вогнутости профиля широко используется в авиации. Например, на взлётно-посадочных режимах полёта для увеличения подъёмной силы при фиксированных углах атаки изменяют кривизну (вогнутость) профилей крыла путём отклонения закрылков. К. п. применяют также в сочетании с соответствующими углами геометрической крутки крыла для получения эллиптического распределения циркуляции скорости по размаху крыла, обеспечивающего минимальное индуктивное сопротивление при дозвуковых скоростях полёта. Максимальные относительные вогнутости профилей, оптимальных для дозвуковых скоростей полёта, достигают значения fmax = 1,5—2,5%. При этом максимальная вогнутость для классических дозвуковых профилей находится на расстоянии 30—50% хорды от носка крыла. Для сверхкритических профилей, рассчитанных на трансзвуковые скорости полёта, характерно более заднее ее положение по хорде (70—80%). Этим достигается уменьшение кривизны верхней образующей в носовой и центральных частях профиля и дополнительное подгружение хвостовой части профиля.

При сверхзвуковых скоростях полёта наличие вогнутости практически не создаёт приращения подъёмной силы. Тем не менее К. п. используется для минимизации сопротивления сверхзвуковых крыльев и получения заданного значения коэффициента момента тангажа при нулевой подъёмной силе.

Л. Е. Васильев.

кризис сопротивления — уменьшение сопротивления шара с возрастанием скорости набегающего потока при Рейнольдса числах Re, близких к критическому значению Re.{{~}} 1,5*105. Явление было установлено в 1912 А. Г. Эйфелем, объяснено в 1914 Л. Прандтлем. Поскольку оно противоречит известному факту о возрастании сопротивления тела пропорционально квадрату скорости, то его называют также парадоксом Эйфеля — Прандтля.

При Re < Re* на поверхности шара развивается ламинарный пограничный слой, который отрывается в окрестности миделевого сечения, при этом срывная зона охватывает всю кормовую часть шара, что обусловливает значительное сопротивление давления.

При Re > Re* ламинарный режим течения в окрестности миделя сменяется турбулентным (точка Т на рис.); турбулентный пограничный слой по сравнению с ламинарным имеет более наполненный профиль скорости и может выдержать большие положительные градиенты давления. Вследствие этого точка 5 отрыва пограничного слоя смещается вниз по потоку, сокращаются поперечные размеры застойной зоны, и, хотя при этом сопротивление трения несколько возрастает, полное сопротивление аэродинамическое шара уменьшается из-за существенного снижения сопротивления давления. Своё объяснение Прандтль подтвердил результатами экспериментальных исследования обтекания двух шаров, один из которых имел гладкую поверхность, а на лобовой поверхности другого было установлено тонкое проволочное кольцо для искусственной турбулизации течения. Установка кольца (турбулизатора) привела к смещению точки отрыва потока вниз по течению с сечения {{φ}} ≈ 80{{°}} при ламинарном пограничном слое в сечение {{φ}} ≈ 100—120{{°}} и уменьшению полного сопротивления шара.

К. с. имеет место также при движении с дозвуковыми скоростями других плохо обтекаемых тел с гладким контуром: круговой цилиндр, эллипсоиды и т. д. Для хорошо обтекаемых тел (аэродинамические профили и другие) он практически не наблюдается.

В. А. Башкин.

Распределение коэффициента давления сp = 2(р - p{{}})/{{ρ}}u2{{}} (р — давление на поверхности шара, p{{}} — давление в набегающем потоке, u{{}} — скорость потока, {{ρ}} — плотность среды вдоль образующей шара: 1 — Re = 157200, cx = 0.471; 2 — Re = 251300, cx = 0,313; 3 — Re = 298500, cx = 0,151; 4 — Re = 424500, cx = 0,143; штриховая кривая — идеальная жидкость при безотрывном обтекании; М — положение максимума скорости среды, cx — безразмерный коэффициент полного аэродинамического сопротивления.

Крикун Александр Филиппович (1909—1970) — советский воздухоплаватель. Окончил Московскую воздухоплавательную школу ГВФ (1936). Выполнял полеты на свободных аэростатах для тренировок лётного состава и научно-исследовательских целей (налетал свыше 2500 ч); совершил ряд рекордных полётов на аэростатах разных объёмов. В 1938 вместе с А. А. Фоминым и Г. И. Голышевым выполнил полёт на субстратостате с планёром, отцепленным на высоте 5100 м. Выполнил ряд полётов для отработки прыжков с парашютом с аэростата, Помощник командира стратостата-парашюта ВР-60 “Комсомол”, совершившего 12 октября 1939 полёт на высоте 16800 м. В годы Великой Отечественной войны начальник штаба отдельного воздухоплавательного отряда. После войны работал пилотом свободных аэростатов в Центральной аэрологической обсерватории Гидрометеослужбы СССР. 27 апреля 1949 вместе с П. П. Полосухиным при полёте на субстратостате СССР ВР-79 объёмом 2650 м3 установил всесоюзный рекорд высоты прыжка (11668 м), который превышал мировой.

А. Ф. Крикун.

криогенная аэродинамическая труба (от греческого kr{{y}}os — холод, мороз, лёд и -gen{{e}}s — рождающий, рождённый) — аэродинамическая труба, в которой рабочий газ охлаждается вплоть до температуры начала равновесной конденсации в потоке. Охлаждение потока производится с целью повышения Рейнолъдса числа Re за счёт уменьшения динамической вязкости. Другие известные способы увеличения Re путём увеличения полного давления p0 или характерных размеров l аэродинамической трубы и модели приводят к увеличению требуемой для проведения эксперимента мощности привода (N{{∞}}p0l2), тогда как увеличение чисел Рейнольдса путём снижения температуры торможения Т0 приводили уменьшению мощности привода (N{{∞}}T0,5).

Охлаждение рабочего газа — воздуха или азота — производится обычно путём впрыска и испарения в нём жидкого азота. При заданных давлении p0 и размере рабочей части l имеют место следующие зависимости основных параметров К. а. т. от температуры торможения при Маха числе М = const: Re{{∞}}Т0-1,4, расход газа G{{∞}}T0-0,5, скорость ω{{∞}}T00,5 и скоростной напор q = {{ρ}}ω2/2∞/2 не зависит от Т0 (см. рис.). При Re = const, p0 = const расход полной энергии для обычной компрессорной трубы требуется примерно в 2 раза больший, чем для криогенной включая затраты на получение жидкого азота. Постоянство скоростного напора а является очень важным качеством К. а. т.: при охлаждении потока (p0 = const) Re растёт, а нагрузка на модель не изменяется, что позволяет исследовать раздельно влияние значения Re и аэроупругости на аэродинамические характеристики модели.

При криогенных температураx свойства воздуха (или азота) отличаются от свойств совершенного газа. Однако эти отличия при давлениях до 0,4 МПа и температурах, которые превышают температуры конденсации, составляют не более 1% и практически не сказываются на газодинамических характеристиках потока. Потому при анализе экспериментальных данных и проведении аэродинамических расчётов можно пользоваться уравнениями для совершенного газа с показателем адиабаты {{γ}} = 1,4.

А. Л. Искра.

Зависимости относительных значений числа Рейнольдса {{Re}}, плотности газа {{р}}, расхода газа {{б}}, скоростного напора {{д}}, потребной мощности {{N}} и скорости потока {{ш}} (отнесённых к их значениям при некоторой “начальной” температуре) от температуры торможения T0.

криогенное топливо — жидкое топливо (при температуре ниже 120 К), получаемое сжижением газов глубоким охлаждением, К К. т. относятся жидкие водород, метан и (в значительной мере условно) пропан. Они обладают повышенным хладоресурсом топлива, что важно для решения проблем, связанных с охлаждением теплонапряжённых элементов летательного аппарата, силовой установки и бортового оборудования при больших скоростях полёта.

Широкие перспективы открываются при использовании в качестве авиационного топлива жидкого водорода, имеющего высокие энергетические характеристики. С применением водорода связывают возможности создания самолётов с большими гиперзвуковыми скоростями полёта. Жидкий пропан рассматривается в качестве эффективного хладагента для бортовых систем кондиционирования и теплонапряжённых элементов летательных аппаратов и силовых установок. При использовании пропана значительно легче (по сравнению с использованием водорода и метана) решаются проблемы сжижения, транспортировки, хранения, а также размещения К. т. на летательном аппарате. Метан по многим важным эксплуатационным показателям (плотности, температурному диапазону жидкого состояния и другим) существенно уступает пропану, но превосходит его по ресурсам сырья.

В 1988 в СССР начались лётные испытания экспериментального самолёта Ту-155, способного использовать в качестве топлива жидкий водород и сжиженный природный газ.

Н. Ф. Дубовкин.

критическая скорость течения — местная скорость {{α}}* стационарного течения газа, равная местной скорости звука. К. с. т. вводится обычно при анализе движения идеального совершенного газа, формула для её расчёта следует из Бернулли уравнения при отсутствии массовых сил: {{α}}* = [2Н({{γ}} - 1)/({{γ}} + 1)]{{' }} = Vm[({{γ}} - 1)/({{γ}} + 1){{-lf}},где {{γ}} — показатель адиабаты, H — энтальпия торможения, Vm — максимальная скорость в газе. В задачах аэро- и гидродинамики К. с. т. часто используется в качестве характерного масштаба скорости.

критические режимы летательного аппарата — опасные формы свободного движения летательного аппарата (например, инерционное вращение, самовращение, сваливание, штопор), развивающиеся при значительных превышениях установленных для данного типа летательного аппарата лётных ограничений. Общим для таких режимов является сложное пространственное движение, нередко с большими скоростями вращения и значительными линейными и угловыми ускорениями, вследствие чего летательный аппарат может практически полностью выйти из-под контроля нетренированного лётчика. Кроме того, возникающие при этом изменения характера реакции летательного аппарата на отклонения органов управления для выхода из К. р. требуют, как правило, особых приёмов пилотирования.

критическое сечение сопла — см. в статье Лаваля сопло.

Крокко (Сrоcco) Гаэтано Артуро (1877—1968) — итальянский специалист в области авиации и артиллерии, один из пионеров ракетной техники, генерал. Учился а университете в Палермо (1896—1900). Статьи по авиации и воздухоплаванию печатал с 1902. Особое внимание уделял вопросам устойчивости и управляемости летательных аппаратов. В 1904 одним из первых обосновал необходимость применения элеронов. Большое внимание уделял исследованию воздушных винтов, первым предложил (1905) использовать режим авторотации винта для осуществления аварийной посадки вертолётов. В 1904—1926 — один из руководителей итальянского дирижаблестроения. Построенный в 1908 при его участии дирижабль Р-1бис положил начало итальянской школе полужёстких дирижаблей. Внёс ряд усовершенствований в конструкцию, аэродинамику и вооружение дирижаблей. После 1926 занимался авиацией, особое внимание уделял проблемам высотной и реактивной авиации, испытывал твердотопливные ракеты. После Второй мировой войны возглавлял Итальянскую ассоциацию ракетных исследований и аэронавтики, пропагандировал межпланетные полёты и космические исследования, в том числе “пакетное” использование ракетных двигателей. Именем К. назван кратер на Луне.

Г. А. Крокко.

Крокко (Сrоссо) Луиджи (р. 1909) — итальянский учёный в области авиации и космонавтики, профессор. Окончил Римский университет (1931). В 1928—1949 занимался теоретическими и экспериментальными исследованиями в области аэродинамики больших скоростей и реактивного движения. С 1949 работает в США; руководитель Гуггенхеймского центра реактивного движения в Принстоне (1949—73).

круговая скорость — см. в статье Космические скорости.

“Крузейру ду Сул” (Servicos А{{é}}геos Cruzeiro do Sul) — авиакомпания Бразилии. Осуществляет перевозки в странах Южной Америки. Основана в 1927. В 1989 перевезла 3,6 миллионов пассажиров, пассажирооборот 3,63 миллиардов пассажиро-км. Авиационный парк — 13 самолётов.

Крутень Евграф Николаевич (1890—1917) — русский лётчик, капитан. Окончил Гатчинскую военную авиационную школу со званием военного лётчика (1914). В 1914—1916 летчик, командир второго армейского авиационного отряда, командир второго авиационного отряда истребителей. В 1916 командирован во Францию и Великобританию, где ознакомился с постановкой авиационного дела, освоил новые типы самолётов, принял участие в боевых действиях. После возвращения в Россию назначен (апрель 1917) командиром второй боевой авиационной группы, в состав которой входили три отряда истребителей. К. разработал теорию и проверил на практике многие приёмы воздушного боя. Им написаны работы “Воздушный бой” (1916), “Истребительная авиация” (1917) и другие. Сбил около 20 самолётов противника. Погиб в июне 1917, возвращаясь с боевого задания.

Лит.: Залуцкий Г. В., Выдающиеся русские летчики. М., 1953.

Е. Н. Крутень.

крутка крыла — угловое отклонение местных хорд крыла от его базовой плоскости (см. Системы координат летательного аппарата) и (или) изменение кривизны профилей крыла по его размаху. Различают геометрические и аэродинамические крутки. Геометрическая К. к. — изменение по размаху крыла углов между базовой плоскостью крыла и местными хордами при постоянном по размаху значении кривизны профиля; характеризуется местным углом крутки, который считается положительным, если передняя точка хорды лежит выше задней. Изменение кривизны профилей по размаху крыла при расположении всех местных хорд в одной плоскости называется аэродинамической К. к. или аэродинамической закрученностью крыла. При малых углах атаки можно считать, что подъёмная сила в каждом сечении закрученного неплоского крыла при заданном угле атаки равна сумме подъёмной силы в этом сечении для плоского крыла при том же угле атаки и дополнительной подъёмной силы, обусловленной К. к.; характерным свойством закрученного крыла является наличие ненулевой подъёмной силы в различных сечениях крыла при нулевой подъёмной силе всего крыла.

К. к. широко применяется в прикладной аэродинамике для создания несущих поверхностей с заданными суммарными аэродинамическими нагрузками. Наиболее важным является использование К. к. для получения приращения коэффициента продольного момента (см. Аэродинамические коэффициенты) при нулевой подъёмной силе и для минимизации той части сопротивления аэродинамического, которая связана с созданием подъёмной силы; при дозвуковых скоростях полёта таким сопротивлением является индуктивное сопротивление. Применение К. к. позволяет повысить степени реализации подсасывающей силы и получить распределение нагрузки по размаху крыла, близкое к эллиптическому, при котором индуктивное сопротивление минимально. При сверхзвуковых скоростях полёта наряду с индуктивным (вихревым) сопротивлением появляется волновое сопротивление, которое также может быть уменьшено путём применения соответствующей К. к.

Оптимальные формы срединной поверхности крыла, то есть оптимальные К. к., определяются из решения соответствующих вариационных задач. Широко используются для этой цели панельные методы линейной крыла теории. Обычно решается задача отыскания оптимальной К. к., обеспечивающей получение минимального сопротивления при заданной подъёмной силе с дополнительными возможными ограничениями на значения коэффициента продольного момента и угла атаки, соответствующие нулевой подъёмной силе, на максимально допустимые углы крутки и прогибы средний линий и т. д. Применение оптимальных К. к. позволяет практически реализовать заметные выигрыши в значениях сопротивления и максимального аэродинамического качества летательного аппарата при сверхзвуковых скоростях, в особенности при дозвуковых кромках крыла. Например, применение К. к. на крыле с частично дозвуковыми передними кромками позволило повысить значение максимального аэродинамического качества сверхзвукового пассажирского самолёта Ту-144 при крейсерских Маха числах полёта М{{}} = 2—2,2 на 10%. При сверхзвуковых передних кромках крыла возможности уменьшения сопротивления, обусловленного подъёмной силой, за счёт К. к. значительно сужаются.

Л. Е. Васильев.

крыла теория — математическое описание в рамках определенной схемы течения взаимодействия движущегося крыла летательного аппарата с окружающей средой при заданных внешних условиях, геометрии крыла, законах его движения и деформациях поверхности (упругих или вызванных отклонениями рулей). К. т. — одна из основных проблем аэродинамики на всех этапах её развития — базируется на уравнениях газовой динамики, выражающих собой сохранения законы; на поверхности крыла выполняются граничные условия прилипания в вязкой и непротекания в идеальной жидкости.

Математическая постановка задач К. т. всегда представляла собой компромисс между потребностями практики и возможностями теории, Основное внимание в К. т. уделяется изучению пространственных эффектов; анализ локальных явлений при условиях, в которых работают отдельно взятые сечения крыла, обычно рассматриваются профиля теорией. Особенности применяемых схем течения определяются: 1) формой крыла в плане, наиболее важными характеристиками которой являются удлинение крыла {{λ}} = l2/S (l — размах, S — площадь крыла) и угол стреловидности {{χ}}; 2) Маха числом полёта M{{}} = V/a{{}} (V — скорость движения крыла относительно среды, a{{}} — скорость звука в невозмущенном потоке); 3) относительными значениями возмущений газодинамических переменных, которые вносятся телом в невозмущенный поток и определяются прежде всего местными углами атаки и числом М{{}}.

Наибольшее развитие и применение получила линейная К. т., в которой удерживаются только первые степени возмущений газодинамических переменных. Она неприменима для трансзвуковых течений и гиперзвуковых течений, а также при больших углах атаки крыла; при транс- и гиперзвуковых скоростях потока поведение возмущений описывается нелинейными уравнениями, линеаризация которых практически невозможна. С начала XX в. и до 40-х гг. К. т. развивалась для несжимаемой жидкости применительно к крыльям малой стреловидности и большого удлинения. Фундаментальные основы её были заложены Н. Е. Жуковским и С. А. Чаплыгиным. Жуковский показал, что механизм образования подъёмной силы можно описать в рамках модели идеальной жидкости (см. Жуковского теорема). Он ввёл понятие о вихрях присоединённых, связанных с крылом, и предложил схему обтекания (схему несущей нити), которая легла в основу всех вихревых методов расчёта крыла и воздушного винта, а Чаплыгина — Жуковского условие о конечности скорости на задней острой кромке профиля дало простой и универсальный подход к выделению решения, имеющего физический смысл. Согласно этой схеме, крыло заменяется одним прямолинейным присоединённым вихрем с переменной по размаху циркуляцией скорости Г, и с него по направлению невозмущенной скорости сбегает слой полубесконечных вихрей свободных, что обеспечивает выполнение теоремы о постоянстве циркуляции скорости. Согласно правилу плоских сечений (см. Тонкого тела теория), каждое сечение z0 = const крыла обтекается как профиль при истинном угле атаки {{α}} = {{α}}г - {{Δα}}, где {{α}}г — геометрический угол атаки, {{Δα}} — скос потока, значение которого зависит от скорости, индуцируемой свободными вихрями на присоединённом. В результате для определения Г(z0) получается интегро-дифференциальное уравнение Прандтля:

{{формула}}

где {{α}}(z0) и f(z0) — известные функции, определяемые геометрией крыла и формой профиля.

Со второй половины 40-х гг. в связи с применением стреловидных крыльев малого удлинения интенсивно разрабатывается более точная схема несущей поверхности (см. также Стреловидного крыла теория). В этом случае тонкое, слабо изогнутое крыло, близкое к плоскости y = 0 (рис. 1), заменяется вихревым слоем интенсивности {{γ}}(x, z), расположенным на проекции крыла на плоскость y = 0. Свободные вихри {{Σ}} сходят с задней кромки крыла и располагаются в плоскости y = 0 параллельно оси x, их интенсивности, согласно теореме о сохранении циркуляции скорости, выражаются через {{γ}}(x, z). Получающаяся замкнутая вихревая система создаёт поле скоростей, потенциал скорости которого {{φ}}(x, y, z) удовлетворяет уравнению Лапласа {{Δφ}} = 0 и граничному условию непротекания на поверхности крыла: д{{φ}}/дy0 = f(x0, z0) ( = - V{{}}). С помощью Био — Савара формулы задача по определению {{γ}}(х, z) сводится к решению сингулярного интегрального уравнения

{{формула}}

(интеграл поднимается в смысле конечной части по Адамару). По найденному полю скоростей поле давления определяется с помощью Бернулли уравнения, а нагрузки на крыло (разность {{Δ}}p давлений на нижней и верхней поверхностях) вычисляются по теореме Жуковского “в малом”; {{Δ}}p = {{ρ}}Wov{{γ}}, где {{ρ}} — плотность среды, {{γ}} — интенсивность присоединённого вихревого слоя, Wov — нормальная к оси вихри составляющая относительной скорости в точке, принадлежащей крылу. Эта формула обладает большой общностью: она применима для любой тонкой несущей поверхности, в том числе и при нестационарном обтекании.

В сжимаемой жидкости потенциал скорости удовлетворяет линеаризированному уравнению

{{формула}}

При дозвуковых скоростях (М{{}} < 1) линейная задача с помощью преобразования Прандтля — Глауэрта

x = (l — M2)1/2xм, y = yм, z = zм

(индекс “м” обозначает преобразованные координаты) сводится к предыдущей, но для крыла преобразованной формы в плане (см. Прандтля — Глауэрта теория). При сверхзвуковых скоростях в качестве неизвестной функции удобно взять потенциал скорости {{φ}}(x, у, z). Решение линеаризированного уравнения имеет вид (области интегрирования указаны на рис. 1):

{{формула}}

где R2 = [(xx0)2 — (M{{}}2 — 1)[(yy0)2 + (zz0)2])1/2.Значения д{{φ}}/дy на S известны из граничного условия непротекания, на диафрагмах {{σ}} из соображений симметрии {{φ}}(x0, 0, z0) = 0, а на вихревом следе {{Σ}} из условия сохранения циркуляции скорости {{φ}}(x0, 0, z0) = {{φ}}(x*0, 0, z*0), где x*0, z*0 — координаты задней кромки.

Линейная К. т. позволяет надёжно изучать суммарные и некоторые локальные эффекты для крыльев и самолётов при умеренных углах атаки (кроме транс- и гиперзвуковых скоростей), поэтому она продолжает развиваться. В связи с внедрением адаптивных крыльев появились задачи, в которых определяются деформации поверхности (обычно углы отклонения носков) для обеспечения безударного обтекания и ликвидации отрыва потока. Потребности динамики полёта и аэроупругости стимулировали развитие нестационарной К. т. как при гармонических (колебания самолёта, флаттер), так и произвольных (переходные режимы, воздействие порывов ветра) зависимостях параметров от времени. При этом усложняется структура свободных вихрей (наряду с продольными появляются поперечные вихри), что существенно усложняет уравнения К. т. и методы их решения.

Прогресс ЭВМ и численных методов дали жизнь новому научному методу — вычислительному эксперименту. Наряду с традиционными схемами большое развитие получили дискретные вихревые схемы с соответствующим математическим описанием (метод дискретных вихрей, панельный метод).

Значительным достижением аэродинамики явилось установление и внедрение в практику самолётостроения эффекта полезного отрыва. При обтекании тонких крыльев с острых передних кромок сходит носовая вихревая пелена, которая на крыльях большой стреловидности сворачивается в устойчивые вихревые жгуты, создающие дополнительное разрежение над крылом. В результате возрастают несущие свойства и критический угол атаки крыла. Поэтому одной из важных задач К. т. стало установление диапазона углов атаки и скольжения, а также угловых скоростей, в котором имеет место эффект полезного отрыва. Оказалось, что критические значения этих параметров можно находить расчётом из условия невозможности существования вихревых жгутов (из-за пульсаций и разрушения). При достаточно больших Рейнольдса числах отрывные режимы с фиксированными местами отрыва потока можно исследовать в рамках теории идеальной жидкости, как правило, путём решения нестационарных задач. На рис. 2 проведено сравнение теоретических и экспериментальных данных для треугольного крыла ({{γ}} = 1,5), а на рис. 3 показаны вихревые структуры, вычисленные методом дискретных вихрей.

При полностью отрывном нестационарном обтекании тонкого крыла свободные вихри сходят со всех кромок и образуют систему продольных и поперечных вихрей (рис. 4) с осями, не параллельными вектору местной скорости. В методе дискретных вихрей криволинейные нити суммарных вихрей (присоединённых и свободных) на крыле и свободных вне его заменяются системой прямолинейных вихревых отрезков, образующих совокупность замкнутых вихревых четырёхугольников, при этом циркуляции скорости вокруг сторон четырёхугольника одинаковы. (В панельном методе непрерывное распределение вихрей заменяется кусочно непрерывным, по элементами поверхности тела — панелям.) Значения циркуляции присоединённых вихрей изменяются за счёт схода свободных, которые движутся со скоростями частиц жидкости, так что остаются справедливыми все теоремы о вихрях, Форма следа определяется последовательно в каждый расчётный момент времени. При этом условие Чаплыгина—Жуковского удовлетворяется на всех кромках, а граничное условие непротекания — в конечном числе точек на поверхности крыла (светлые кружки на рис. 4). Нахождение циркуляции скорости сводится к решению системы линейных алгебраических уравнений, невырожденность определителя которой обеспечивает устойчивость счёта. При этом выполняются все условия задачи, причём уравнения неразрывности и импульсов в несжимаемой жидкости — автоматически.

При безотрывном обтекании крыла вихри с передних кромок не сходят, а при частично отрывном сходят только с их части, которая заранее считается известной. Например, заострение передних кромок гарантирует появление на них отрыва; предотвратить о его, даже на тонком крыле, можно отклонением секций носков, причём углы отклонения, обеспечивающие безударное обтекание, находятся расчётом. В стационарных задачах циркуляции скорости присоединённых вихрей во времени не меняются и нет поперечных свободных вихрей; форма вихревого следа при каждом угле атаки вычисляется методом итераций. При больших до- и трансзвуковых скоростях полёта поверхность крыла и вихревой след за ним также заменяются системами вихревых отрезков, но в отличие от несжимаемой жидкости вне крыла необходимо вводить соответствующим образом распределённые источники (см. Источники и стоки). Определение циркуляции вихрей, интенсивностей источников и формы следа осуществляется также методом итераций, причём потенциал скорости на m-й итерации удовлетворяет уравнению Пуассона {{Δφ}}(m) = M{{}}-2F(m-1)(x, y, z), правая часть которого считается известной и выражается через потенциал скорости и его производные на предыдущей итерации. Итерационный процесс быстро сходится, и обычно требуется не более 5 итераций даже при появлении зон с умеренными сверхзвуковыми скоростями. На рис. 5 показаны линии постоянных значений числа Маха на верхней поверхности треугольного крыла с {{λ}} = 1,5 при отрывном обтекании ({{α}} = 15{{°}}, М{{}} = 0,7).

Схема тонкой несущей поверхности даёт приемлемые результаты по аэродинамическим нагрузкам и суммарным характеристикам, но недостаточна для изучения распределения давления по крылу, поэтому развиваются модели с учётом конечности толщины тела. На сверхзвуковых скоростях, когда области влияния поверхности на данную точку (часть поверхности, ограниченная обратным конусом Маха, см. рис. 1) ограничены, основное применение получили прямые численные методы интегрирования уравнений газовой динамики (так называемые методы конечных разностей, крупных частиц и другие). Изучение отрывного обтекания крыльев конечной толщины на дозвуковых скоростях привело к физико-математическим моделям, основанным на схемах идеальной жидкости и пограничного слоя; влияние последнего сказывается в увеличении эффективной толщины крыла и, главное, в формировании отрыва. Методы К. т. используются для исследования несущих поверхностей и другие типов (крестообразных, кольцевых и т. д.), а также схематизированых компоновок самолётов.

Численные методы и ЭВМ становятся одним из основных источников информации в аэродинамике. Однако аналитические подходы в К. т. продолжают играть существенную роль как при математической постановке задачи, так и при организации вычислительного эксперимента. Точные соотношения (например, обратимости теорема), асимптотические решения и т. д. служат важным средством контроля, иногда позволяют упростить решение некоторого класса задач (метод сращиваемых асимптотических разложений и другие). За физическим экспериментом, в особенности натурным, остаётся важнейшая контрольная роль. Вычислительный эксперимент в сочетании с физическим даёт возможность установить количеств, рамки применимости используемых схем и моделей. ЭВМ позволили использовать их в полном виде без каких-либо дополнительных упрощений, поэтому существенно расширяются области применимости классических схем; особенно это относится к модели идеальной жидкости.

Лит.: Жуковский Н. Е., О присоединенных вихрях, Собр. соч., т. 4,М., 1949; Чаплыгин С. А., О давлении плоскопараллельного потока на преграждающие тела (к теории аэроплана). Собр. соч., т. 2, М., 1948; Голубев В. В., Лекции по теории крыла, М.—Л,, 1949; Красильщикова Е. А., Крыло конечного размаха в сжимаемом потоке, М,—Л., 195Z; Белоцерковский С. М., Тонкая несущая поверхность в дозвуковом потоке газа, М., 1965; Эшли X., Лэндал М., Аэродинамика крыльев и корпусов летательных аппаратов, пер. с англ., М., 1969; Белоцерковский С. М., Скрипач Б. К., Табачников В. Г., Крыло в нестационарном потоке газа, М., 1971; Белоцерковский С. М., Ништ М. И., Отрывное и безотрывное обтекание тонких крыльев идеальной жидкостью, М., 1978; Исследование сверхзвуковой аэродинамики самолетов на ЭВМ, М., 1983.

С. М. Белоцерковский.

Рис. 1. Основные области в схеме несущей поверхности: S — крыло; {{Σ}} — вихревой след; {{σ}} — диафрагмы; штриховыми прямыми показаны прямой и обратный конусы Маха; заштрихована область влияния.

Рис. 2. Эффект полезного отрыва на треугольном крыле ({{λ}} = 1,5) — зависимости коэффициентов нормальной силы cn и продольного момента mzот угла атаки {{α}}: 1 — расчет с носовой пеленой (штриховая линия — переходный режим с пульсациями вихревых жгутов); 2 — без носовой пелены; {{}} — эксперимент на тонком крыле (относительная толщина {{c}} = 1%), {{}} — на крыле с профилированными сечениями ({{с}} = 18%).

Рис. 3. Вихревые структуры треугольного крыла (а, крыло изображено треугольником) и стреловидного крыла с наплывом (б, крыло обозначено буквой S, а = 15{{°}}); стрелками указано направление набегающего потока.

Рис. 4. Расчётная вихревая схема крыла (красная линия) в теории несущей поверхности (отрывное нестационарное обтекание).

крылатая ракета — беспилотный летательный аппарат одноразового действия с автономной системой наведения, снаряжённый ядерной или обычной боевыми частями, совершающий управляемый полёт в атмосфере. К. р. подразделяются на до-, сверх-, гиперзвуковые; стратегические и тактические; для поражения наземных и морской целей; авиационного, морской и наземного базирования. Управление К. р. осуществляется с помощью аэродинамических сил. В качестве маршевого двигателя применяется турбореактивный двигатель, турбореактивный двухконтурный двигатель, прямоточный воздушно-реактивный двигатель, комбинированный прямоточный воздушно-реактивный двигатель и другие Для сообщения дозвуковым К. р. наземного и морского базирования необходимой скорости полета на ней устанавливается ускоритель в виде ракетного двигателя твёрдого топлива. У сверхзвуковых К. р. с прямоточным воздушно-реактивным двигателем роль крыла при больших сверхзвуковых скоростях могут выполнять корпус ракеты и боковые воздухозаборники; разгон ракеты до скорости, соответствующей началу работы маршевого прямоточного воздушно-реактивного двигателя (М{{}} = 1,8—2,2), осуществляется либо с помощью заряда твёрдого топлива, располагаемого внутри камеры сгорания прямоточного воздушно-реактивного двигателя (комбинированный прямоточный воздушно-реактивный двигатель) либо с помощью ускорителя в виде ракетного двигателя твердого топлива расположенного снаружи — по бокам ракеты или по схеме “тандем”. В зависимости от положения органов продольного управления относительно центра масс ракеты принято различать “нормальную” аэродинамическую схему (рули в хвостовой части корпуса), “утку” (рули в носовой части корпуса) и “бесхвостку” (рули на задней кромке крыла).

К. р. (прежде их называли беспилотными самолётами-снарядами) применялись Германией в конце Второй мировой войны (ФАУ-1).В США разработка К. р. начата в 50-е гг.

Созданы К. р. “Матадор”, “Мейс”, “Снарк”, “Регулус”, которые при дальности полёта 1000—8000 км и дозвуковой скорости были тяжёлыми и громоздкими (стартовая масса 5,5—27 т, длина 10—20 м, диаметр корпуса 1,3—1,5 м). Достижения военной технологии 70-х гг. дали возможность резко повысить точность наведения К. р., уменьшить габаритные размеры и разместить их на подвижных пусковых платформах — самолётах, кораблях, подводных лодках и мобильных наземных пусковых установках.

Отличительными чертами современных дозвуковых К. р. являются массовость их применения, малые высота полёта и заметность в радиолокационном, оптическом (инфракрасном) и акустическом диапазонах (см. “Стелс” техника). В качестве системы наведения стратегических дозвуковых К. р. с ядерной боевой частью применяется корреляционная система, в которой используется метод навигации по топографическим картам местности. Набор таких карт вводится в запоминающее устройство цифровой вычислительной машины ракеты. С помощью радио- и барометрических высотомеров вычисляется высота рельефа местности над уровнем моря, которая сравнивается с эталонными данными, заложенными в цифровой вычислительной машине. После определения координат автопилот возвращает ракету на расчётную траекторию. Точность выхода ракеты а район цели зависит в основном от точности карт и типа рельефа (равнина, предгорье, горы и т. д.). Для дезориентации системы ПВО полет от одного участка коррекции до другого совершается по криволинейному маршруту, а для уменьшения уязвимости — с огибанием рельефа на малой высоте. Для К. р. с обычной боевой частью с целью повышения точности попадания в цель возможно применение систем конечного наведения с использованием датчиков в радио и оптическом диапазонах длин волн. Рассматривается также возможность использования для наведения К. р. систем, размещаемых на искусственный спутник Земли. Большое значение для будущих К. р. имеют перспективные экономичные двигатели и энергоёмкие топлива высокой плотности.

Основные данные дозвуковых стратегических К. р. США с ядерной боевой частью (дальность 2500 км, скорость 885 км/ч):

Показатель

ALCM-B (AGM-86B]

“Томагавк” (BGM-109A)

Носитель

Самолет

Подводная лодка, корабль

Длина, м

6,32

6,18*

Диаметр м

0,61 (ширина)

0,517

Размах крыла

3,66

2,60

Масса, кг

1360

1440*

*С ускорителем.

А. П. Добролюбов.

крыло — несущая поверхность летательного аппарата, создающая основную аэродинамическую подъёмную силу. Аэродинамические, весовые и прочностные свойства К. в основном определяются его геометрическими характеристиками (профилем крыла, формой К. в плане, то есть формой крыла при виде сверху, размерами, см. Размах крыла, Хорда, Площадь крыла) и конструктивно-силовой схемой. В авиастроении используются самые разнообразии К., различающиеся формой, конструкцией и размерами. Форма крыла, его размеры в значительной степени определяются назначением летательного аппарата, но их выбор во многих отношениях остается компромиссным. Например, для достижения высокого значения аэродинамического качества К. при дозвуковых скоростях полета желательно иметь как можно большее удлинение крыла в то время как проблема снижения веса конструкции требует уменьшая удлинения.

Различают крылья фиксированной и изменяемой в полёте геометрии. Как правило, К. симметрично относительно вертикальной плоскости летательного аппарата.

Простейшим классом К. фиксированной геометрии являются трапециевидные крылья с прямолинейными передними и задними кромками (рис. 1, а). Для определения геометрии трапециевидных крыльев достаточно задать три параметра, например, удлинение {{λ}}сужение {{η}} и угол стреловидности по передней кромке {{χ}}0 (в более общем случае угол стреловидности по линии n процентов хорд {{χ}}n). К трапециевидным К. относят, в частности, К. прямой и обратной стреловидности, а также треугольные и ромбовидные К. (рис. 1, б—д). Треугольные крылья определяются всего одним параметром, например {{χ}}0({{λ}} = 4/tg{{χ}}0, {{η}} = {{}}). К треугольным К. примыкают так называем готические К. с передними кромками параболической формы (рис. 1, е). Особое место в крыла теории занимает К. эллиптической формы в плане, у которого закон изменения хорд b пo размаху имеет вид b = b0(l — {{z}}2)1/2, где {{z}} = 2z/l (b0 — корневая хорда крыла, l — его размах). В рамках модели несущей линии Л. Прандтлем было показано, что такое К. обладает минимальным индуктивным сопротивлением при заданном удлинении. Обычно такое К. компонуется из двух полуэллипсов, имеющих общую большую ось, которая одновременно является линией 1/4 хорд эллиптического крыла (рис. 1, ж).

Важное практическое значение имеет класс К. сложной формы в плане, представляющих собой комбинацию исходного трапециевидного крыла с передним, а возможно и задним наплывами крыла (рис. 1, з). Форма их может быть различной. При простейшей треугольной форме наплывов для задания геометрии К. сложной формы в плане требуется как минимум пять геометрических параметров. К крыльям сложной формы в плане следует отнести также оживальное К. (рис. 1, и). К. сложной формы в плане обладают специфическими аэродинамическими свойствами и представляют авиационным конструкторам более широкие возможности для удовлетворения многочисленных и часто противоречивых практических требований, предъявляемых к крылу. Поскольку для каждого режима полёта оптимально К. с определенными параметрами, уже в 30-е гг. были предложены конструкции самолётов с К. изменяемой в полёте геометрии. Из всех предложении как естественный способ наиболее полного удовлетворения требований к многорежимным самолётам, летающим на дозвуковых и сверхзвуковых скоростях, а также на малых высотах, в практику авиастроения вошёл самолёт с крылом изменяемой в полёте стреловидности. При разработке таких самолётов выяснилось, что и на форму К. изменяемой стреловидности приходится налагать определенные ограничения. В частности, оказалось, что К. изменяемой стреловидности должно иметь развитую неподвижную центропланную часть, чтобы обеспечить приемлемые характеристики продольной устойчивости при изменении угла стреловидности консолей (рис. 1, к). К крыльям изменяемой геометрии следует отнести поворотное антисимметричное крыло (рис. 1, л), которое в отличие от всех остальных К. не имеет вертикальной плоскости симметрии, а также различные варианты Х-образных крыльев (рис. 1, м).

Специфическую группу составляют крылья экзотических форм в плане, к которым можно отнести, например, крылья двухпланной схемы с сомкнутыми концевыми хордами, крылья, концы которых сомкнуты с концами хвостового горизонт, оперения, кольцевое К. кольцеплана (колеоптера), крылья обратного сужения.

В ракеткой технике широко применяются крестообразные и решётчатые крылья.

Конструктивно К. обычно имеет отъёмные части, прикреплённые к центроплану или фюзеляжу летательного аппарата (рис. 2). Иногда К. может быть отдельным агрегатом планёра летательного аппарата. У К. с изменяемой в полете стреловидностью отъёмная подвижная часть крепится к неподвижной части консоли или к центроплану с помощью шарнира. Различают следующие основные зоны или части К.: носовую, центральную, хвостовую, корневую, концевую и законцовку (рис. 3). К К. иногда также относят и наплывы. В носовой части располагаются отклоняемые носки, Крюгера щитки, предкрылки, в центральной — интерцепторы, в хвостовой — элероны, закрылки, элевоны, и т. п. (см. Механизация крыла, Органы управления). Законцовка представляет собой концевой обтекатель К., к которому могут крепиться противофлаттерные грузы, аэронавигационные огни и т. п. В некоторых случаях на К. устанавливаются шайбы концевые. На поверхности многих стреловидных крыльев имеются аэродинамические перегородки.

Во внутреннем пространстве К. обычно размещаются топливо, различные коммуникации, приводы механизации К. и органов управления с проводками управления, ёмкости для жидкостей и газов, электронное и другое оборудование. В К. могут размещаться ниши для уборки стоек шасси, и, если в полёте стойки убираются в К., эти ниши закрываются специальными створками. Кроме того, в К., на К. или пилонах под К. могут устанавливаться двигатели, подвешиваться контейнеры с дополнительным оборудованием, подвесные топливные баки, вооружение.

На К. действует совокупность нагрузок, основными из которых являются: аэродинамические нагрузки, нагрузки от вибраций, акустические нагрузки, избыточное давление во внутренних полостях К., распределённые и сосредоточенные массовые силы, пропорциональные перегрузке, если на К. установлены двигатели — тяга двигателей, нагрузки, вызываемые нагревом конструкции; реакция фюзеляжа и (для военных самолётов) силы, возникающие при функционировании размещённого на К. вооружения.

Конструкция К. должна обеспечивать статическую прочность и усталостную (см. Усталость) прочность, отсутствие дивергенции (это особенно относится к К. с обратной стреловидностью), реверса органов управления и флаттера. Расчётные случаи нагружения К., коэффициент безопасности, условия обеспечении безопасности по реверсу и флаттеру предусматриваются Нормами прочности и другими нормативными документами. Для сохранения аэродинамических свойств К. в некоторых случаях лимитируются его упругие деформации (см. Аэроупругость). Одно из важнейших требований к конструкции К. — минимальная масса; существенное значение имеют требования технологичности и удобства эксплуатации.

Прочность К. определяется в основном прочностью силовой конструкции его центральной части, поскольку именно здесь осуществляется передача всех действующих на К. сил к фюзеляжу летательного аппарата и максимальны значения изгибающих моментов. Поэтому строительная высота (толщина профиля К.) в этой зоне максимальна. Силовой набор К. состоит обычно из лонжеронов, стрингеров, нервюр, панелей (или “работающей” обшивки). В зависимости от конструкции обычно различают лонжеронные, моноблочные и кессонные (см. Кессон) крылья. В лонжеронных К. преобладающая часть изгибающего момента передаётся лонжеронами, в кессонных — обшивкой или панелями. К., в котором элементы силового набора образуют однозамкнутый кессон, называется монококовым. Поскольку в носовой и хвостовой частях К. изгибающий момент обычно невелик, то они выполняются с обшивкой небольшой толщины, с панелями стрингерного или вафельного типа или же с применением сотовых конструкций (рис. 4). Существуют также сплошные металлические К. (например, у ракет). Особые конструктивные решения предусматриваются в К. гиперзвуковых самолётов, подвергающихся интенсивному аэродинамическому нагреванию (см. Горячая конструкция, Охлаждаемая конструкция).

Силовая схема К. определяет выбор и взаимное расположение элементов силового набора. Кессонную схему с большим числом лонжеронов называют стеночной; она характеризуется отсутствием нормальных нервюр и наличием мощных панелей. В нервюрной схеме много нормальных нервюр и сравнительно мало лонжеронов; панель выполняется в виде тонкой обшивки, подкреплённой стрингерами. Многолонжеронная схема с лонжеронами, параллельными размаху, часто применяется в К. малого удлинения. В небольших К. такого типа иногда используется расположение лонжеронов “звездой” (рис. 5). В К. большого удлинения применяется схема со стреловидными лонжеронами, иногда оптимальной оказывается переменная стреловидность. Употребляются различные подкосные схемы и т. д. От правильного выбора силовой схемы в значительной мере зависят жесткостные и массовые характеристики К.

В К. применяются почти все конструкционные авиационные материалы, в том числе волокнистые композиционные материалы. Применение последних не только уменьшает массу конструкции благодаря большей удельной прочности и жёсткости, но и создаёт дополнительные возможности управления жёсткостью. Соответствующий подбор направлений волокон в слоях позволяет, например, уменьшить крутильную деформацию К. и обеспечить достаточную эффективность элеронов.

Лит.: Кюхеман Д., Аэродинамическое проектирование самолетов, М., 1983.

Л. Е. Васильев, Л. Ш. Коткин.

Рис. 1. Различные формы крыла в плане.

Рис. 2. Крыло самолёта: 1 — правый элерон; 2 —триммер элерона; 3 — двухщелевой закрылок; 4 — интерцептор; 5 — левый элерон; 6 — законцовка; 7 — предкрылок; 8 — аэродинамическая перегородка.

Рис. 3. Отъёмная часть крыла: 1 — нервюра; 2 — лонжероны; 3 — панель; 4 — люк.

Рис. 4. Хвостовая часть крыла: а — тонкая обшивка со стрингерами; б — сотовый блок; в — вафельная панель.

Рис. 5. Силовые схемы крыла: а — подкосная схема; б — схема с параллельными лонжеронами; в — расположение лонжеронов “звездой”; 1 — наклонный лонжерон, 2 — усиленная нервюра; 3 — лонжерон; 4 — бортовая нервюра; 5 — подкос.

крыло бесконечного размаха — теоретическая модель крыла, в которой профиль крыла принимается неизменным по его размаху, а размах крыла считается бесконечно большим. Поскольку в этом случае реализуется плоскопараллельное течение, то расчёты аэродинамических характеристик крыла упрощаются. Согласно идее Н. Е. Жуковского, при расчётах К. б. р. заменяется одним вихрем присоединенным, а основанная на этой модели теория несущей нити (см. Крыла теория) используется и для расчетов крыльев достаточно большого, но конечного размаха.

“Крылья родины” — ежемесячный авиационно-космический журнал. Издаётся с октября 1950. Журнал освещает самолётный, вертолетный, парашютный, дельтапланёрный, воздухоплавательный, авиамодельный и другие виды авиационного спорта, проблемы военной и гражданской авиации, малоизвестные страницы истории авиации, рассказывает о космонавтике, КБ, самодельных летательных аппаратах, лётчиках-испытателях, ведет раздел в помощь техническому творчеству школьников всех возрастов “Крылышки”. Награждён групповым Дипломом Международной авиационной федерации.

Крюгера щиток — более простой, чем предкрылок, элемент механизации передней части крыла (см. статью Механизация крыла и рис. 1 к ней). К. щ. выдвигается в отклоняется с нижней поверхности крыла и от плоских щитков отличается формой носовой части, обеспечивающей более благоприятное его обтекание. К. щ. выполняются со щелями и без щелей. Принцип увеличения подъёмной силы крыла на больших углах атаки за счёт К. щ. тот же, что и за счёт предкрылка, но эффективность К. щ. меньше, чем предкрылка. К. щ. используются также в сочетании с предкрылками: в центральной части крыла устанавливаются К. щ., а на консольной части — предкрылки.

“Кубана” (Empresa Consolidada Cubanа de Aviacion) — авиакомпания Кубы. Осуществляет перевозки в страны Южной Америки, Европы и Азии. Основана в 1929, до 1961 называлась “Компанья Кубана де авиасьон”. В 1989 перевезла 1,32 миллионов пассажиров, пассажирооборот 2,12 миллиардов пассажиро-км, Авиационный парк — 69 самолётов.

Кубышкин Алексеи Георгиевич (р. 1908) — советский лётчик-испытатель, подполковник. Окончил Оренбургскую военную школу лётчиков (1934). С 1934 на испытательской работе в научно-исследовательском институте ВВС. Участник Великой Отечественной войны. Проводил испытания опытных самолётов конструкции Н. Н. Поликарпова, А. Н. Туполева, С. А. Лавочкина, В. П. Яценко и других. Провёл государственные испытания истребителей Ла-5 и Ла-5ФН. Летал на самолётах около 50 типов. Награждён 2 орденами Красного Знамени, орденами Отечественной войны 1-й и 2-й степеней, Красной Звезды, медалями.

А. Г. Кубышкин.

Кувшинов Леонид Михайлович (1914—1973) — советский лётчик-испытатель, полковник, заслуженный лётчик-испытатель СССР (1959), Герой Советского Союза (1957). В Советской Армии с 1936. Окончил Московский аэроклуб, Оренбургскую (1936) и Борисоглебскую (1937) военные школы лётчиков. Работал в научно-исследовательском институте ВВС (1939—1962). Участник Великой Отечественной войны. Освоил более 100 типов самолётов. Проводил государственные испытания истребителей Як, МиГ, в том числе взлёт с катапульты на истребителе МиГ-19. Принимал участие в совершенствовании космической техники и подготовке космонавтов. Награждён 2 орденами Ленина, 4 орденами Красного Знамени, орденами Отечественной войны 1-й и 2-й степени, орденом Красной Звезды, медалями.

Л. М. Кувшинов.

“Кудашев-1” — самолёт, построенный в 1910 профессором Киевского политехнического института А. С. Кудашевым. Биплан (см. рис. в таблице IV) деревянной конструкции с вынесенными на фермах передним рулём высоты к хвостовым оперением (стабилизатор и руль направления). Длина самолёта 10 м, размах крыльев 9 м, их суммарная площадь 34 м . Обтяжка крыльев — из прорезиненнго полотна, двигатель “Анзани” мощностью 25,7 кВт. Полетная масса 420 кг. Полёт, выполненный Кудашевым 23 мая (5 июня) 1910 на Сырецком ипподроме в Киеве, стал первым в России полётом самолёта отечественной постройки.

Кудрин Борис Николаевич (1898—1977) — советский летчик-испытатель. Окончил краткие теоретические курсы авиации при Императорском техническом училище (1916; ныне МГТУ), Гатчинскую военную авиационную школу (1917). Инженерное военное училище в Петрограде (экстерном), Высшую военную авиационную школу в Одессе (1917). Участник Первой мировой и Гражданской войн. С 1918 в Советской Армии. В 1922—1924 помощник начальника Высшей школы воздушной стрельбы и бомбометания в г. Серпухове. Летал на самолете “Илья Муромец”. Работал в Борисоглебской военной авиационной школе (1924—1925), был лётчиком на линии Архангельск — Сыктывкар (1927—1932). В 1932—1950 лётчик-испытатель. Проводил заводские испытания опытных самолётов Харьковского и Казанского авиационных институтов, Центрального аэрогидродинамического института, ОКБ В. Ф. Болховитинова и Н. Н. Поликарпова, летательных аппаратов ОКБ В. Н. Челомея. Испытывал самолёты И-153 с турбокомпрессором, ВИТ-1, ВИТ-2, СПБ, БИ в безмоторном варианте и с жидкостным ракетным двигателем, летательные аппараты-бесхвостки и другие. Награждён орденами Красного Знамени, Отечественной войны 1-й степени, Красной Звезды, медалями.

Б. Н. Кудрин.

Кузнецов Вячеслав Александрович (1902—1984) — советский авиаконструктор. В 1920 начал работать чертёжником в Комиссии по тяжёлой авиации. С 1921 в Экспериментальном авиационном отделе Центрального аэрогидродинамического института. В 1929 окончил вечернее отделение Московского высшего технического училища. Одновременно с работой в Центральном аэрогидродинамическом институте преподавал в Московском авиационном институте (1933—1935). В Центральном аэрогидродинамическом институте принимал участие в проектировании аэродинамических труб, в проектировании и испытаниях вертолётов, исследованиях воздушных винтов. В 1930 возглавил бригаду по проектированию экспериментальных автожиров. До 1939 под руководством К. спроектированы и построены автожиры ЦАГИ-2ЭА, А-6, -8, -13, -14, 45. В 1939—1941 К. — начальник конструкторского отдела вертолётного завода. С начала войны — в ЛИИ, где принимал участие в совершенствовании боевых самолетов. В 1942 вернулся в Центральный аэрогидродинамический институт, где занимался скоростными самолётами с реактивными двигателями. С 1950 заместитель главного конструктора в ОКБ М. Л. Миля. Преподавал в Военно-воздушной инженерной академии имени профессора Н. Е. Жуковского (1942—1950). Ленинская премия (1958), Государственная премия СССР (1951, 1971). Награждён орденами Ленина, Октябрьской Революции, 3 орденами Трудового Красного Знамени, орденом Красной Звезды, медалями.

В. А. Кузнецов.

Кузнецов Михаил Васильевич (р. 1913) — советский лётчик, генерал-майор авиации (1959), дважды Герой Советского Союза (1943, 1945). В Советской Армии с 1933. Окончил военную школу морских лётчиков (1934), Военно-воздушную академию (1951; ныне имени Ю. А. Гагарина). Участник советско-финляндской и Великой Отечественной войн. В ходе войны был командиром эскадрильи, штурманом, командиром истребительного авиаполка. Совершил 345 боевых вылетов, сбил лично 22 и в составе группы 6 самолётов противника. После войны на командных должностях в ВВС. Награждён орденом Ленина, 4 орденами Красного Знамени, орденами Богдана Хмельницкого 2-й степени. Трудового Красного Знамени, 2 орденами Красной Звезды, медалями. Бронзовый бюст в деревне Агарино Московской области.

Лит.: Назаров О.. Школа мужества, в кн.: Люди бессмертного подвига, 4 изд., кн. 1, М., 1975.

М. В. Кузнецов.

Кузнецов Николай Алексеевич (р. 1922) — советский лётчик, заслуженный пилот СССР (1971), дважды Герой Социалистического Труда (1973, 1979). Окончил Семипалатинскую военную школу авиамехаников (1942), Магнитогорскую учебную эскадрилью ГВФ (1943), Ульяновскую школу высшей лётной подготовки ГФВ (1955), Казахский государственный университет имени С. М. Кирова (1963). Пилот-инструктор Курганской школы пилотов ГВФ (1943—1946), пилот, командир авиазвена (1947—1950), заместитель командира авиаотряда (1950—1963), первый заместитель начальника (1963—1970), начальник Казахского управления гражданской авиации (1971—1987). Награжден 2 орденами Ленина, орденом Трудового Красного Знамени, медалями. Бронзовый бюст в совхозе “Путь Ленина” Нуринского района Карагандинской области.

Н. А. Кузнецов.

Кузнецов Николай Дмитриевич (р. 1911) — советский конструктор авиационных двигателей, академик АН СССР (1974; член-корреспондент 1968), генерал-лейтенант инженерно-авиационной службы (1968), дважды Герой Социалистического Труда (1957, 1981), Окончил Военно-воздушную академию Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1938; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского). Участник Великой Отечественной войны. В 1943—1946 заместитель главного конструктора, в 1946—1949 главный конструктор в ОКБ В. Я. Климова. В 1949 возглавил моторостроительное ОКБ в Куйбышеве, с 1956 — генеральный конструктор. Под руководством К. созданы турбовинтовые двигатели и турбореактивные двухконтурные двигатели для самолётов Ту, АН, Ил, двигатели для экспериментального самолёта Ту-155, работающие на жидком водороде (НК-88) и сжиженном природном газе (НК-89). На базе авиационных двигателей, отработавших ресурс, созданы турбоприводы для газоперекачивающих станций. Ленинская премия (1957). Награждён 5 орденами Ленина, орденами Октябрьской Революции, Красного Знамени, Отечественной войны 1-й степени, 2 орденами Красной Звезды, медалями. Бронзовый бюст в Самаре. См. статью НК. Портрет смотри на стр, 300.

Н. Д. Кузнецов.

Кузнецов Эдуард Иванович (р. 1928) — советский лётчик-испытатель, генерал-майор авиации (1978), заслуженный лётчик-испытатель СССР (1972), Герой Советского Союза (1966). Окончил Кировабадское военное авиационное училище лётчиков (1951), Школу лётчиков-испытателей (1957), Московский авиационный институт (1966). С 1957 на испытательской работе в ОКБ С. В. Ильюшина. Проводил заводские испытания самолётов Ил-18, Ил-62. Ил-76, Ил-86. Совместно с В. К. Коккинаки на Ил-18 установил ряд мировых рекордов высоты и скорости полёта. Ленинская премия (1978). Награждён 2 орденами Ленина, орденами Октябрьской Революций, Красной Звезды, медалями.

Э. И. Кузнецов.

Куйбышевский авиационный институт (КуАИ) им. С. П. Королёва — высшее учебное заведение в области авиастроения. Основано в 1942. В 1966 институту присвоено имя С. П. Королёва. С институтом связана деятельность таких ученых, как М. Д. Миллионщиков, Н. Д. Кузнецов и других. Среди выпускников института видные государственные деятели, крупные организаторы промышленности, лауреаты Ленинской премии и Государственных премий СССР, Герои Социалистического Труда. В составе института (1990): факультеты — летательных аппаратов, двигателей летательных аппарат, эксплуатации летательных аппаратов и двигателей, обработки металлов давлением, радиотехнический, системотехники; вечерние факультеты; дневное и вечернее подготовительные отделения; межотраслевой факультет повышения квалификации ииженерно-технических работников авиационной промышленности; 2 инженерных центра; 40 кафедр, научно-исследовательская часть, в которой 28 лабораторий. В 1989/1990 учебном году в институте обучалось 9 тысяч студентов, работало около 760 преподавателей, в том числе один академик, один член-корреспондент, 47 профессоров и докторов наук, 440 доцентов и кандидатов наук. Издаются (с 1952) сборники Трудов института и межвузовские сборники. Институт награждён орденом Трудового Красного Знамени (1967).

Куйбышевский завод “Прогресс” — берет начало от московского завода “Дукс”, который после национализации (1918) был переименован в Государственный авиационный завод №.1 (с 1923 имени Общества друзей воздушного флота, в 1925—1941 имени Авиахима). В октябре 1941 эвакуирован в Куйбышев. После национализации завод продолжал выпускать самолёты иностранных марок, а с 1923 приступил к серийному производству отечественных самолётов, в основном конструкции Н. Н. Поликарпова и Д. П. Григоровича (Р-1, Р-2, И-1, И-2, И-2бис, ПМ-1, И-3, Р-5, И-15, И-15бис, И-153); некоторые из них были ими разработаны в КБ завода. Выпускались также сельскохозяйственные самолёт “Конёк-Горбунок” (“Хиони” №5), боевые самолёты И-7, ДИ-6, Р-2 (разработка завода), американский лицензионный самолёт “Валти-7”, многоцелевой самолёт ББ-22 (см. Як) и многие другие. В декабре 1939 на заводе было образовано КБ-l под руководством А. И. Микояна (впоследствии Московский машиностроительный завод имени А. И. Микояна), после чего было развёрнуто производство истребителей МиГ-1 и Миг-3 (в 1940—1942 завод изготовил их соответственно 100 и 3142 экземпляра преимущественно в Москве). В 1940 на базе опытного цеха завода был образован Государственный авиационный завод №51 (впоследствии Машиностроительный завод имени П. О. Сухого). После перебазирования в Куйбышев заводу №1 были приданы строившийся здесь завод №122 и ряд эвакуированных сюда других заводов. Основной продукцией завода стали штурмовики Ил: в 1941—1946 было выпущено 11773 экземпляров Ил-2 и 1268 экземпляров Ил-10. После войны завод освоил производство реактивных самолётов. Строились истребители МиГ-9, Ми Г-15, МиГ-17, бомбардировщики Ил-28, Ту-16. В разные годы в КБ завода работали также С. А. Кочеригин, А. Я. Щербаков, М. И. Гуревич, В. П. Яценко и другие конструкторы. С 1958 завод перешёл на выпуск ракетно-космической техники народно-хозяйственного и научного назначения. Предприятие (с 1961 называется заводом “Прогресс”) награждено орденами Ленина (1940), Октябрьской Революции (1976), Красного Знамени (1945), Трудового Красного Знамени (1960). В 1989 на основе завода образовано производственное объединение.

Куйбышевское авиационное производственное объединение — берёт начало от авиационного завода №18. который был основан в 1930 в Воронеже, а в ноябре 1941 эвакуирован в Куйбышев на территорию строившегося здесь завода №295. В 30-е гг. в КБ завода работали А. С. Москалёв, К. А. Калинин. В 1933—1941 строились пассажирский самолёт САМ-5, рекордный самолёт АНТ-25, бомбардировщики ТБ-3 (АНТ-6), К-12, К-13, ДВ-3, Ер-2, штурмовик Ил-2. В Куйбышеве в годы Великой Отечественной войны завод №18 продолжил производство штурмовиков, фронту было поставлено 18200 самолётов Ил-2 и 5172 самолета Ил-10. В дальнейшем выпускались бомбардировщики Ту-4, Ил-28, Ту-95МС, пассажирские самолёты Ту-114, Ту-154. Предприятие награждено орденами Ленина (1941), Красного Знамени (1945), Трудового Красного Знамени (1970). В 1989 на основе завода образовано производственное объединение.

Куйбышевское моторостроительное производственное объединение им. М. В. Фрунзе — берёт начало от завода “Гном”, образованного в 1912 в Москве (французская концессия) и выпускавшего авиационные двигатели серий “Гном” и “Рон”. В 1918 завод был национализирован, с 1920 назывался завод №2 “Икар”, с 1927, после объединения с заводом №4 “Мотор”, — завод №24 имени М. В. Фрунзе. В октябре 1941 эвакуирован в Куйбышев на территорию строившегося здесь моторостроительного завода №377. В 20—30-е гг. завод производил авиационные поршневые двигатели М-4, М-5, М-6, М-11, M-15, M-I7, М-26, АМ-34, АМ-35, АМ-37, АМ-38, М-62, М-63, строил ряд опытных двигателей. В Куйбышеве в годы Великой Отечественной войны завод №24 выпускал поршневые двигатели АМ-38, АМ-42, а после войны освоил производство газотурбинных двигателей. Строились турбореактивные двигатели ВК-1, турбовинтовые двигатели НК-12, турбореактивные двухконтурные двигатели НК-4. В разные годы в КБ при заводе работали А. Д. Швецов, А. А. Бессонов, А. А. Микулин, В. А. Добрынин, М. Р. Флисский. Предприятие награждено орденами Ленина (1941), Красного Знамени (1945), Трудового Красного Знамени (1960). В 1977 на основе завода образовано производственное объединение.

Куйбышевское научно-производственное объединение “Труд” — берёт начало от опытного завода №2, который был образован в апреле 1946 в Куйбышеве. Предприятие специализируется в разработке авиационных и ракетных двигателей. Указанное название присвоено в 1982. Награждено орденом Ленина (1957). О двигателях, созданных на предприятии под руководством Н. Д. Кузнецова, см. в статье НК.

Кулебакин Виктор Сергеевич (1891—1970) — советский учёный в области электротехники и автоматики, академик АН СССР (1939; член-корреспондент 1933), генерал-майор инженерно-авиационной службы (1942). После окончания Императорского технического училища (1914; ныне Московский государственный технический университет) призван в армию. В 1915 окончил Гатчинскую военную авиационную школу, стал одним из первых военных лётчиков России. С 1917 преподавал в ряде вузов, в том числе в Московском высшем техническом училище (до 1940; с 1921 профессор), Военно-воздушной инженерной академии имени профессора Н. Е. Жуковского (1923—1960). В 1960—1970 руководил Комитетом научно-технической терминологии АН СССР. Труды в области авиационной техники посвящены системам электрического зажигания и пуску авиационных двигателей, оборудованию аэродромов, системам самолётного электроснабжения и электропривода, обеспечению ночных полётов. Государственная премия СССР (1950). Награждён 2 орденами Ленина, орденами Красного Знамени, Трудового Красного Знамени, 3 орденами Красной Звезды, 2 орденами “Знак Почёта”, медалями.

Соч.: Электрификация самолетов, т. 1—4, М., 1952—56.

Лит.: Фролов В. С., В. С. Кулебакин, 1891—1970, М., 1980.

В. С. Кулебакин.

Кулик Михаил Маркелович (1909—1983) — советский учёный в области дирижаблестроения, доктор технических наук (1967). Окончил дирижаблестроительный факультет Московского авиационного института (1932). В 1932—1935 работал в “Дирижаблестрое”. В 1934 испытывал дирижабль В-6. В 1935—1936 разрабатывал дирижабль ДП-15. В 1936—1937 главный инженер Управления воздухоплавания ГВФ. Был необоснованно репрессирован и в 1937—1939 находился в заключении. В годы Великой Отечественной войны руководил работами по полевому ремонту самолётов. В 1956—1964 заместитель начальника и начальник Государственного НИИГА. В 1964—1970 заместитель министра гражданской авиации. В 1970—1983 работал в Центральном аэрогидродинамическом институте. Награждён орденами Отечественной войны 2-й степени, Трудового Красного Знамени, 2 орденами Красной Звезды, медалями.

М. М. Кулик.

Кулинченко Тихон Макарович (1895—1970) — советский воздухоплаватель, изобретатель аэростата-парашюта. Участник Гражданской войны. Окончил воздухоплавательную школу в Ленинграде. С 1930 научный сотрудник аэростатической лаборатории Московского авиационного института, с 1932 в “Дирижаблестрое”. В 1940—1955 научный сотрудник Центральной аэрологической обсерватории Гидрометеослужбы СССР. Предложил свободные аэростаты типа аэростат-парашют, превращающиеся после выпуска подъёмного газа в парашют, и руководил их созданием. На этих летательных аппаратах объёмом 1850 м3 в 1935 было совершено два успешных полёта на высоте 5 и 5,2 км, а в 1937—1938 на летательном аппарате объемом 2200 м3 — полёты на высоте 4 и 3,1 км. В 1938—1939 К. совместно с М. И. Волковым разработал стратостат-парашют ВР-60 “Комсомол” объёмом 19800 м3, на котором 12 октября 1939 был совершён подъём на высоту 16,8 км.

Т. М. Кулинченко.

Кумертауское авиационное производственное объединение — берет начало от вертолётного завода, образованного в 1962 в г. Кумертау Башкирской АССР на базе ремонтно-механического завода. В 1977 на основе завода создано производственное объединение. Предприятие выпускало крыло пассажирского самолёта Ту-154, многоцелевые вертолёты Ка-26, Ка-32.

Кунгурцев Евгений Максимович (р. 1921) — советский лётчик, генерал-майор авиации (1964), дважды Герой Советского Союза (дважды 1945). В Советской Армии с 1940. Окончил Балашовскую военную авиационную школу (1942); Военно-воздушную академию (1952; ныне имени Ю. А. Гагарина). Высшую военную академию (1957; позже Военная академия Генштаба Вооруженных Сил СССР). Участник Великой Отечественной войны. В ходе войны был лётчиком-штурмовиком, командиром звена, командиром эскадрильи. Совершил 210 боевых вылетов. После войны командовал авиаполком и авиадивизией. Награждён орденом Ленина, 4 орденами Красного Знамени, орденами Богдана Хмельницкого 3-й степени, Александра Невского, Отечественной войны 1-й степени, Трудового Красного Знамени, 2 орденами Красной Звезды, медалями. Бронзовый бюст в Ижевске.

Лит.: Максименко Е. А., Дважды Герой Советского Союза Е. М. Кунгурцев, М., 1949.

Е. М. Кунгурцев.

Курлин Юрий Владимирович (р. 1929) — советский лётчик-испытатель, заслуженный лётчик-испытатель СССР (1972), Герой Советского Союза (1966). Окончил индустриальный техникум в Ростове-на-Дону (1949), Краснокутское лётное училище гражданской авиации (1952), Киевский институт инженеров гражданской авиации (1956), Школу летчиков-испытателей (1958). С 1958 на испытательской работе в ОКБ О. К. Антонова. Участвовал в доводке опытных самолетов, проводил исследовательские полёты на специальных и критических режимах. Провёл заводские испытания самолета Ан-22 (“Антей”). Летал на самолётах 65 типов, Награждён орденом Ленина, 2 орденами “Знак Почёта”, медалями.

Ю. В. Курлин.

курс — угол в горизонтальной плоскости между заданным направлением и проекцией продольной оси летательного аппарата (см. Системы координат) на горизонтальную плоскость; отсчитывается от заданного направления по часовой стрелке, если смотреть на горизонтальную плоскость сверху, К. изменяется от 0 до 360{{°}}. Понятие К. используют, в основном, в навигации.

В зависимости от заданного направления отсчета различают: истинный курс {{Ψ}}н (ИК), отсчитываемый от северного направления истинного меридиана (измеряется с помощью инициальных систем навигации, астрономических компасов и звёздно-солнечных ориентаторов); магнитный курс {{Ψ}}м (МK), отсчитываемый от северного направления магнитного меридиана (для измерения МК используются магнитные и гироиндукционные, или гиромагнитные, компасы); условный курс {{Ψ}}усл. (УК), отсчитываемый от условного направления, выбор которого определяется принятой методикой измерения К. конструктивными особенностями курсовой или комплексной навигационной системы (измеряется с помощью гирополукомпаса); ортодромический курс {{Ψ}}орт. (ОК) отсчитываемый от меридиана (параллели) в ортодромической системе координат (измеряется с помощью систем курса и вертикали, имеющих компенсацию перемещения летательного аппарата, звездно-солнечных ориентаторов и астрономических компасов).

курсовая система — аппаратура для измерения курса летательного аппарата. Основными элементами К. с. являются гироскоп направления (ГН) и чувствительный к магнитному полю Земли датчик (магнитный или индукционный) ГН определяет гироскопический курс летательного аппарата, который с учётом широтной поправки приводится к начальному условному значению курса (приведённый курс) либо непрерывно корректируется по сигналам чувствительного элемента (гиромагнитный курс). Соответственно для К. с. характерно наличие двух режимов работы — режима гирополукомпаса и режима магнитной коррекции.

Основная функция экипажа летательного аппарата при работе с К. с. — формирование и контроль приведённого курса (установка начального значения, коррекция курса, ввод широтной поправки). Приведённый курс используется в навигационном вычислителе для определения местоположения летательного аппарата, гиромагнитный — при работе с радионавигационными системами, а также службой управления воздушным движением. На летательном аппарате, не оборудованном навигационными вычислителями, или в качестве резервной аппаратуры применяется также разновидность К. с. — гиромагнитный компас, имеющий лишь режим коррекции ГН по сигналам чувствительного элемента.

На летательный аппарат, имеющих в составе навигационного комплекса бортовую цифровую вычислительную машину, формирование курса летательного аппарата выполняется по сигналам некорректируемого ГН или гироскопической платформы. В связи с совершенствованием инерциальных систем они стали использоваться в качестве основных средств измерения курса летательного аппарата.

А. А. Карчевский.

курсовертикаль — гироскопический прибор для измерения курса, углов крена и тангажа летательного аппарата. В К. с. помощью гироскопов выдерживается опорная система координат, две оси которой горизонтальны и имеют заданное азимутальное направление. Горизонтирование опорной системы координат осуществляется с помощью так называемого маятников-корректоров или акселерометров, азимутальное ориентирование — с помощью корректора курса. Сигналы курса, крена и тангажа выдаются в аналоговой форме или в виде цифрового кода.

Кутателадзе Самсон Семёнович (1914—1986) — советский теплофизик, академик АН СССР (1979; член-корреспондент 1968), Герой Социалистического Труда (1984). Окончил Ленинградский теплотехникум (1932) и Ленинградский заочный индустриальный институт (1950). В 1932—1958 работал в Центральном котлотурбинном институте. С 1958 в Сибирском отделении АН СССР. Один из создателей, а с 1964 директор Института теплофизики. Основные труды посвящены развитию теории теплообмена, теории турбулентного пограничного слоя, гидродинамике газожидкостных систем. Государственная премия СССР (1983), Государственная премия РСФСР, (1988, посмертно). Награждён 3 орденами Ленина, орденами Октябрьской Революции, Трудового Красного Знамени, Отечественной войны 1-й степени, “Знак Почёта”, медалями.

Соч.: Пристенная турбулентность, ч. 1—2, Новосиб., 1970—71; Тепломассообмен и трение в турбулентном пограничном слое, 2 изд., М., 1985 (совм. с А. И. Леонтьевым).

С. С. Кутателадзе.

Кутахов Павел Степанович (1914—1984) — советский военачальник, Главный маршал авиации (1972), заслуженный военный лётчик СССР (1966), дважды Герой Советского Союза (1943, 1984). В Советской Армии с 1935. Окончил военную школу лётчиков (1938). Высшие офицерские лётно-тактические курсы (1949), Высшую военную академию (1957; позже Военная академия Генштаба Вооруженных Сил СССР). Участник советско-финляндской и Великой Отечественной войн. В ходе войны был командиром эскадрильи, командиром истребительного авиаполка. Совершил 367 боевых вылетов, лично сбил 14 и в составе группы 28 самолётов противника. После войны командовал авиационного соединениями и объединением. В 1967—1969 1-й заместитель главнокомандующего ВВС, с 1969 главнокомандующий ВВС — заместитель министра обороны СССР, Депутат Верховного Совета СССР с 1970. Ленинская премия (1983). Награждён 4 орденами Ленина, орденом Октябрьской Революции, 5 орденами Красного Знамени, орденом Кутузова 1-й степени, орденами Александра Невского, Отечественной войны 1-й степени, 2 орденами Красной Звезды, орденом “За службу Родине в Вооружённых Силах СССР” 3-й степени, медалями, а также иностранными орденами. Бронзовый бюст в деревне Малая Кирсановка Ростовской области.

Лит.: Котыш Н., Маршал из Малокирсановки, в кн.: Они прославили Родину, кн. 1, Ростов н/Д., 1974.

П. С. Кутахов.

Кутты — Жуковского условие [по имени немецкого учёного В. М. Кутты (W. М. Kutta) и Н. Е. Жуковского] — см. Чаплыгина — Жуковского условие.