К

К — обозначение самолётов, созданных под руководством К. А. Калинина (см. статью Калинина самолёты).

Ка — марка вертолётов, созданных в ОКБ, возглавлявшемся Н. И. Камовым (см. Ухтомский вертолётный завод имени Н. И. Камова). Вертолёты, созданные под руководством его преемника С. В. Михеева, имеют также марку Ка (рис. 1), ОКБ специализируется на разработке вертолётов соосной схемы — двухвинтовых вертолётов с расположением несущих винтов (НВ) на одной оси и вращающихся в противоположные стороны. Основные данные вертолётов смотри в таблице 1.

Соосная схема вертолёта всегда привлекала внимание рациональным использованием мощности двигателя (из-за отсутствия её потерь для компенсации реактивного крутящего момента НВ), хорошими манёвренными свойствами и малыми габаритными размерами. В начале 40-х гг. эта схема была наиболее распространённой среди экспериментальных конструкций вертолётов, однако отсутствие в те годы разработанной теории аэромеханики соосного винта и встретившиеся проблемы при его создании и доводке заставили многих конструкторов отказаться от неё.

Развитие ОКБ началось с создания одноместного корабельного вертолёта Ка-10 (1949) для связи и наблюдения, положившего начало производству вертолётов соосной схемы. По компоновочной схеме Ка-10 практически не отличался от своего предшественника — одноместного экспериментального вертолёта Ка-8 (первый полёт в 1947, см. рис. в таблице XXIV), над которым Камов с небольшой группой энтузиастов работал в Центральном аэрогидродинамическом институте с 1945. На новом вертолёте вместо мотоциклетного двигателя М-76, форсированного до мощности 28—31 кВт, был установлен специально спроектированный авиационный четырёхцилиндровый поршневой двигатель АИ-4В. Пилотажные особенности вертолётов соосной схемы оказались очень хорошими для взлёта и посадки на качающиеся палубы ограниченных размеров. Работы по созданию и лётно-морским испытаниям вертолёта Ка-10 и его модификации Ка-10М, в процессе которых впервые в СССР били выполнены взлёты и посадки с палубы корабля (1950), стали и началом создания корабельных вертолётов. Ограниченные возможности небольшого одноместного вертолёта безфюзеляжной конструкции (мог перевозить только лётчика) помешали Ка-10 стать первым серийным вертолётом ОКБ. Им стал новый двухместный корабельный вертолёт Ка-15 (рис. 2 и рис. в таблице XXV) с поршневым двигателем АИ-14В. Основные принципы создания соосных НВ и управления ими остались такими же, как на Ка-10М, но диаметр НВ был увеличен до 9,96 м. Вертолёт предназначался для выполнения ряда задач в интересах кораблей Военно-морского флота. На его базе разработаны учебный вариант УКа-15 и модификации для народного хозяйства Ка-15М и Ка-18. На Ка-15 установлено 2 мировых рекорда.

Создание в СССР океанского флота потребовало дальнейшего развития корабельных вертолётов, способных решать задачи противолодочной обороны, разведки и целеуказания, траления мин, спасательных работ и др. Эти задачи требовали от ОКБ создания вертолёта, значительно превосходящего своего предшественника по массе, скорости и другим показателям. Новый корабельный вертолёт Ка-25 (рис. в таблице XXVIII) был показан в 1961. Высокие качества вертолёта были продемонстрированы в 1974 при разминировании Суэцкого канала. При создании нового поколения корабельных вертолётов успешно были решены такие технические проблемы, как создание системы автоматической стабилизации вертолёта и частоты вращения НВ в полёте, защита от “земного резонанса”, посадка на качающуюся палубу. Одновременно была отработана система автоматизированного складывания лопастей НВ для уменьшения габаритов вертолёта при хранении, создано несколько специальных комплексов целевого оборудования с радиолокационными станциями для выполнения разнообразных задач, решена проблема совместимости — взаимной приспособленности вертолёта и корабля-носителя. Специфические условия базирования и применения корабельных вертолётов оказали влияние не только на выбор конструктивных решений, но и на систему обслуживания вертолёта, подготовки его к полёту. Наличие на борту Ка-25 радиолокационных станций, комплексов разнообразного радиоэлектронного оборудования позволили в конце 1978 успешно выполнить впервые в истории освоения Арктики операцию по проводке атомного ледокола “Сибирь” с караваном судов в условиях полярной ночи.

В начале 70-х гг. был создан многоцелевой корабельный вертолёт Ка-27 для замены Ка-25. Вертолёт выполнен по соосной схеме с двумя газотурбинными двигателями, имеет четырёхстоечное шасси, двухкилевое оперение, оборудован системой складывания лопастей и аварийными надувными баллонетами. При большей (примерно в 1,5 раза) взлётной массе по сравнению с Ка-25 он имеет те же габариты и, следовательно, занимает то же “жизненное пространство” на корабле-носителе (рис. 6). Высокая энерговооружённость обеспечивает применение вертолёта в широком диапазоне повышенных температур наружного воздуха в условиях высокой влажности, то есть эффективное решение задач во всех акваториях Мирового океана. Ка-27 оснащён радиолокационной станций, ЭВМ и современными комплексами пилотажно-навигационного, радиосвязного и специального оборудования. Обеспечен высокий уровень автоматизации полётов, что позволяет эффективно выполнять боевые задачи днём и ночью, в простых и сложных метеоусловиях, на больших удалениях от корабля базирования, Несмотря на значительную взлётную массу Ка-27 не утратил основного качества, присущего вертолётам соосной схемы, — высокой манёвренности и простоты управления. Ка-27 послужил базой для создания несколько модификаций, которые находятся на вооружении ВМФ или разрабатываются: вертолёта Ка-28, являющегося дальнейшим развитием Ка-27; Ка-27ПС — для поисково-спасательных работ (оснащён поисковой радиолокационной станцией и другим оборудованием поиска и спасания терпящих бедствие на воде); транспортно-боевой Ка-29 (оснащён оборудованием и вооружением для борьбы с танками). В 80-х гг. создан боевой высокоманёвренный Ка-50 для поддержки сухопутных войск.

Второе направление в деятельности ОКБ — создание вертолётов для народного хозяйства. Первые в ОКБ вертолёты для этих целей (Ka-15М и Ка-18) были созданы на базе корабельного вертолёта Ка-15 с той же несущей системой и силовой установкой. Ка-15М отличался от Ка-15 набором сменных подвесных кассет (для перевозки почты, мелких грузов) и специальных гондол для больных, укомплектовывался оборудованием для сельскохозяйственных работ (подвесные бункеры для химикатов и агрегаты для их разбрызгивания или распыления). На Ка-18 по сравнению с Ка-15 была удлинена и расширена кабина, вмещающая лётчика и трех пассажиров или больного на носилках. В 1958 на Всемирной выставке в Брюсселе за оригинальность конструктивного решения вертолёт Ка-18 был отмечен золотой медалью. Вертолеты Ка-15М, Ка-18 нашли широкое применение на авиационно-химических работах. Однако малая грузоподъёмность и низкая весовая отдача этих вертолётов отрицательно сказывались на их экономических показателях и рентабельности применения в связи с возросшим объёмом авиационно-химических работ в начале 60-х гг. Поэтому перед ОКБ была поставлена задача создания высокоэффективного специализированного вертолета для сельского хозяйства. С учётом сезонности сельскохозяйственных работ конструкция вертолёта должна была обеспечивать возможность переоборудования его для выполнения других работ.

Ка-26 (рис. 3 и рис. в таблице XXVIII) — многоцелевой вертолёт с двумя поршневыми двигателями М-14В26, трехлопастными соосными НВ, двухкилевым оперением и четырёхопорным неубирающимся шасси. Созданию различных по назначению вариантов способствовало применение на Ка-26 необычного конструктивно-компоновочного решения фюзеляжа в виде “летающего шасси”. Такая схема и комплекты различного быстросъёмного навесного оборудовали (пассажирская кабина, грузовая платформа, аппаратура для опрыскивания и внесения минеральных удобрений и др.) позволяют в течение 1,5—2 ч бригаде из 3 человек переоборудовать вертолёт из одного варианта в другой. К конструктивным особенностям вертолета (кроме схемы “летающего шасси” и двухдвигательной силовой установки с размещением поршневых двигателей в гондолах по бокам фюзеляжа следует отнести широкое применение стеклопластика из которого изготовлены не только различные обтекатели, капоты, пол кабины, бункер для химикатов, но и такие важнейшие элементы конструкции, как лопасти НВ. По сравнению с широко распространенными цельнометаллическими лопастями с прессованным лонжероном такие лопасти имеют значительно больший ресурс. Стеклопластиковые лопасти, конструкция и технология изготовления которых были разработаны ОКБ и запатентованы в пяти странах (США, ФРГ, Великобритания, Франция и Италия), позволили существенно поднять коэффициент полезного действия НВ и обеспечить стабильность его аэродинамических характеристик в различных климатических условиях. Конструкция и технология изготовления лопасти вертолёта Ка-26 стали типовыми в ОКБ для вертолётов различных весовых категорий и назначения. При проектировании Ка-26 была решена проблема создания простого и лёгкого в управлении и пилотировании вертолёта, обладающего высокой экономичностью. Эти качества обеспечили широкое применение Ка-26 в СССР и за рубежом, особенно в варианте для сельского хозяйства. Высокие пилотажные и манёвренные качества и отличный обзор из кабины оказались весьма важными для новой сельскохозяйственной специализации вертолёта. Ка-26 отличают необходимый комфорт и низкий уровень вибраций в кабине пилота. При проведении работ с токсичными химикатами на вертолёте устанавливаются сепаратор-нагнетатель с химическим фильтром, обеспечивающим подачу очищенного воздуха в кабину экипажа, и системы для создания избыточного давления, предотвращающего попадание химикатов в кабину, и для охлаждения воздуха. Ка-26 — первый отечественный вертолёт, получивший сертификат по американским нормам лётной годности (FAR-29) в качестве вертолёта категории “В”. Ка-26 эксплуатируются в Японии, ФРГ и многих других странах. Вертолёт имеет около 8 комплектов сменного оборудования, позволяющего использовать его во многих вариантах применения. На Ка-26 установлено 5 мировых рекордов.

Ка-25К (рис. 4) — транспортный вертолёт с двумя двигателями ГТД-Зф, трёхлопастными соосными винтами и четырёхопорным шасси. Отличительные конструктивные особенности — силовая установка (включающая трансмиссию, втулки НВ с системой управления, двигатели с обеспечивающими системами), выполненная в виде единого легкосъёмного агрегата, и съёмная кабина оператора, устанавливаемая в носовой части фюзеляжа. Оператор управляет вертолётом при проведении монтажно-крановых работ. Такой принцип разделения функций экипажа по управлению вертолётом значительно сокращает время, повышает точность и безопасность выполнения монтажных работ. Для стабилизации груза на внешней подвеске в ОКБ разработана специальная система, состоящая из четырёхстепенного автопилота дифференциальной схемы (с датчиками положения троса), которая обеспечивает устойчивое и определенное положение груза относительно вертолёта, исключает его раскачивание на всех режимах полёта и облегчает лётчику управление вертолётом. На Ка-25К был выполнен перелёт Москва — Париж — Москва (1967). Ка-25К, базируясь на атомном ледоколе “Сибирь”, в 1979—1990 принимал участие в обеспечении навигации судов. Вертолёт рассчитан на перевозку 2 т груза на внешней подвеске.

Ка-32 (см. рис. 5 и рис. в таблице XXIX) выполнен по традиционной для ОКБ схеме с трёхлопастными соосными винтами, компактным фюзеляжем, хвостовым оперением с двумя килевыми шайбами и четырехопорным шасси. Силовая установка состоит из двух газотурбинных двигателей ТВ3-117, размещённых на фюзеляже впереди редуктора НВ. При создании вертолёта широко использованы полимерные композитные материалы, в частности прямоугольные в плане лопасти целиком выполнены из них. Ка-32, способный поднять на внешней подвеске груз 5 т, предназначен для перевозки грузов, монтажа опор, вывозки древесины, проводки караванов судов по Северному морскому пути. На Ка-32 установлено 8 мировых рекордов.

Ка-126 (рис. 7, 9 и 10) — многоцелевой вертолёт, представляющий собой модернизацию вертолёта Ка-26, на котором два поршневых двигателя заменены одним газотурбинным TBO100. Двигатель установлен на фюзеляже позади оси НВ. Замена двигателей при сохранении конструктивно-компоновочной схемы вертолёта как “летающего шасси” позволила увеличить массу полезной нагрузки благодаря снижению массы силовой установки, увеличить максимальную скорость полёта в результате уменьшения вредного сопротивления силовой установки и повысить комфортность в кабине путём снижения уровня вибраций и шума. По вариантам применения и конструктивно-технологическому решению основных агрегатов с широким применением стеклопластика вертолёт аналогичен своему предшественнику.

С целью исследования научных, проектировочных и конструктивных проблем повышения скорости полёта винтокрылых летательных аппаратов в 50-х гг. ОКБ, продолжая работы по развитию вертолётов соосной схемы, обратилось к созданию аппарата нового типа — винтокрыла. Ка-22 (рис. в таблице XXVII) — экспериментальный транспортный винтокрыл с двумя газотурбинными двигателями (первоначально ТВ-2-ВК, а затем Д-25ВК), двумя четырёхлопастными тянущими воздушными винтами диаметр 5,7 м, двумя НВ диаметром 22 м, высокорасположенным крылом и трёхопорным неубирающимся шасси с носовым колесом. Гондолы с двигателями располагались под крылом на его концах. Над крылом в гондолах были установлены редукторы для привода НВ. Таким образом, винтокрыл Ка-22 представлял собой комбинацию вертолёта с поперечным расположением НВ и самолёта. НВ используются для создания подъёмной силы и управления винтокрылом на висении и малых скоростях, а крыло и самолётное оперение служат для тех же целей на больших скоростях. При полёте с высокой скоростью на тянущие винты, предназначенные для создания горизонтальной тяги, передаётся вся мощность двигателей. В процессе испытаний на Ка-22 был получен обширный экспериментальный материал по аэродинамике и прочности лопастей, по устойчивости и управляемости аппарата, по работе турбовинтовых двигателей и системы его регулирования на винтокрыле (в сочетании с несущим и тянущим винтами) и другим проблемам. В 1961 Ка-22 принял участие в воздушном параде в Тушине; в том же году на нём были установлены 8 мировых рекордов в классе комбинированных летательных аппаратов.

Наряду с разработкой винтокрылых летательных аппаратов предприятие занималось проектированием и постройкой аэросаней; их основные данные смотри в таблице 2.

Аэросани “Север-2” были спроектированы с использованием кузова и шасси автомобиля ГАЗ-20 “Победа” и толкающего трёхлопастного винта реверсивного типа (диаметр 3,5 м). Выпускались серийно в 1959—1963 и эксплуатировались Министерством связи СССР. Опыт их эксплуатации показал недостаточные вместимость и прочность стального автомобильного кузова в специфических условиях снежного бездорожья. Аэросани Ка-30 (рис. 8) спроектированы с теми же силовой установкой и толкающим винтом. Цельнометаллический несущий кузов, выполненный по авиационной технологии, обеспечивал необходимую прочность при малой массе. Это позволило повысить его вместимость до 10 человек. С целью уменьшения трения были разработаны лыжи с полиэтиленовым покрытием подошв. Хорошие ходовые и эксплуатационные качества Ка-30, удобство размещения водителя, грузов и пассажиров обеспечили их широкое применение в снежных бездорожных районах страны (на Дальнем Востоке, в Якутии и другие). На базе Ка-30 разработаны вариант на поплавках для летней эксплуатации на реках и санитарный вариант Ка-30С.

Лит.: Камов Н. И., Соосные вертолеты, “Гражданская авиация”, 1968, №4; Яцунович М. С., Практическая аэродинамика соосного вертолета, М., 1965; Развитие авиационной науки и техники в СССР, М., 1980; Кузьмина Л. М., Конструктор вертолетов, М., 1989.

В. А. Касьяников.

Рис. 1. Эмблема вертолётов марки Ка.

Рис. 2. Ка-15.

Рис. 3. Ка-26.

Рис. 4. Ка-25К.

Рис. 5. Ка-32.

Рис. 6. Вертолёты Ка-27 на палубе корабля-носителя.

Рис. 7. Ка-126.

Рис. 8. Аэросани Ка-30.

Рис. 9. Многоцелевой вертолет Ка-126.

Рис. 10. Вертолет Ка-126.

Табл. 2 — Аэросани Ухтомского вертолётного завода

Основные данные

“Север-2”

Ка-30

Год выпуска

1959

1965

Ходовая масса, кг

2346

3200

Тип и марка двигателя

ПД АИ-14РС

ПД АИ-14РС

Мощность двигателя, кВт

191

191

Скорость передвижения

60

100

Дальность хода, км

360

680

Число пассажиров, чел.

4

10

 

кабина летательного аппарата — помещение в летательном аппарате для экипажа, пассажиров и груза, оборудованное соответственно своему назначению.

1) К. экипажа — помещение (отсек фюзеляжа) летательного аппарата, предназначенное для размещения экипажа, рычагов управления летательным аппаратом и двигателями, приборных щитков и панелей, а также другого оборудования (рис. 1). Размеры и компоновка К. зависят от назначения и летно-технических характеристик летательного аппарата, численности экипажа, степени автоматизации управления летательным аппаратом, двигателями и оборудованием, вида системы отображения информации. У истребителей и штурмовиков в К. имеются рабочие места для одного-двух членов экипажа: лётчика и оператора управления оружием; у бомбардировщиков — для двух-четырёх членов экипажа; первого и второго лётчиков, оператора системы наведения и оператора оборонительных систем; у тяжёлых военно-транспортных самолётов — для пяти членов экипажа: двух лётчиков, бортинженера, штурмана и специалиста по загрузке. У пассажирских самолётов, эксплуатирующихся на маршрутах средней и большой протяжённости, в К. обычно предусматривается размещение трех членов экипажа: двух пилотов и бортинженера, у самолётов, обслуживающих маршруты средней и малой протяжённости, число членов экипажа уменьшается до двух человек. Кроме того, в К. пассажирских самолётов, как правило, имеются ещё одно-два дополнительных рабочих места для инструктора (инспектора), штурмана-лоцмана или стажёров.

На больших транспортных самолётах, выполняющих длительные полёты, предусматриваются кабины для сменного экипажа и лиц, сопровождающих перевозимые грузы и технику. Кабина экипажа отделяется от пассажирских салонов перегородкой, обеспечивающей осмотр пассажирской и грузовой кабин.

Компоновка систем отображения информации и пультов управления выполняется с учётом объединения групп приборов по функциональному назначению, степени значимости их для членов экипажа, хорошего обзора и т. п. Основные элементы К., определяющие её компоновку: приборные доски членов экипажа, бортовые и потолочные пульты, центральный пульт кабины. Одно- и двухместные К. боевых и спортивных самолётов закрываются сдвижным или откидывающимся прозрачным фонарём (см. Фонарь кабины экипажа). К. тяжёлых самолётов с большим числом членов экипажа имеет более сложные остекленение, люки и двери.

Конструкция К. экипажа должна обеспечивать хороший обзор внешней обстановки и приборного оборудования, рациональную компоновку рабочих мест, выполнение эргономических требований при минимальном объёме кабины, нормальные условия работы экипажа при выполнении полётов на больших высотах и скоростях, быстрое применение аварийных систем и средств спасения в случае повреждения летательного аппарата или отказа основного оборудования, а для военного летательного аппарата, кроме того, защиту от обстрела, поражающих факторов ядерного взрыва, химического и бактериологического оружия. Для улучшения обзора К. часто выполняется с выступающим за обводы фюзеляжа фонарём. Летательные аппарата, выполняющие полёты на больших высотах и скоростях, оборудуются гермокабинами с системами кондиционирования воздуха. На боевых летательных аппаратах многих типов применяется бронирование К., устанавливаются катапультные кресла (для спасения экипажа может также использоваться кабина отделяемая).

На первых самолётах К. не было, защита лётчика от внешних воздействий ограничивалась кожаным костюмом и шлемом. На самолётах, имевших скорость 80—100 км/ч и высоту полёта 1—2 км, К. были открытыми. С ростом скорости полёта (до 500 км/ч) появились К. полузакрытого типа с защитным козырьком спереди и обтекателем сзади. Увеличение скорости до 800 км/ч и высотности до 10 км привело к созданию негерметичных закрытых кабин с подогревом воздуха и кислородными приборами. Дальнейшее увеличение скорости и высоты полёта потребовало обязательной герметизации К., в которых обеспечивались заданные давление, температура, влажность, и чистота воздуха. Повышение лётно-технических характеристик перспективных летательных аппарат предполагает дальнейшее совершенствование К. уменьшение их массы и объёма, что достигается сокращением числа членов экипажа при одновременном облегчении и улучшении условий их работы, заменой многочисленных приборов, требующих непрерывного контроля, многофункциональными экранными индикаторами на электронно-лучевых трубках, которые выдают для каждого режима полёта необходимый объём информации. На военных летательных аппарат (истребителях) переносимость лётчиком больших перегрузок при маневрировании во время воздушного боя или уклонения при обстреле может быть повышена применением адаптивных (изменяемого положения) кресел и обеспечением управления самолётом посредством небольших рукояток, расположенных на подлокотниках этих кресел, вместо традиционных ручек управления (или штурвала) и педалей.

2) К. пассажирская — помещение в летательном аппарате, предназначенное для безопасной и комфортабельной перевозки пассажиров. В состав К. входят: один или несколько пассажирских салонов, бытовые и вспомогательные помещения (буфет-кухня, туалеты, вестибюли, гардеробы, багажное помещение и др.). Пассажирская К. обслуживается системами, обеспечивающими жизнедеятельность пассажиров в условиях полёта (см. Система жизнеобеспечения). На полу пассажирских кабин имеются продольные рельсы специального профиля для крепления кресел. Конструкция рельсов стандартизована и позволяет изменить шаг расположения кресел. На некоторых самолётах предусматривается конвертируемость пассажирские кабин в грузовые (полностью или частично). При конвертируемости кабин эти рельсы используются для швартовки грузов.

В пассажирской К. имеются аварийные выходы (люки, двери) и необходимое при экстренной эвакуации аварийно-спасательное оборудование.

См. рис. при статье Салон пассажирский.

3) К. грузовая — помещение в летательном аппарате для размещения техники и грузов (рис. 2). Грузовые К. имеются в военно-транспортных, транспортных, иногда грузо-пассажирских летательных аппаратов и занимают большую часть объёма фюзеляжа. Для обеспечения центровки грузовые К. располагаются симметрично относительно центра тяжести летательного аппарата. Габариты К. зависят от размеров и грузоподъёмности летательного аппарата. Длина К. достигает 43,3 м, ширина — 6,4 м и высота — 4,4 м. Грузовые люки обычно располагаются в задней или в передней части К. Пол К. состоит из каркаса и настила. Прочность пола должна обеспечивать восприятие равномерно распределенной, нагрузки и местных сосредоточенных нагрузок (например, от колёс перевозимой техники). Настил пола обычно выполняется из металлических листов, снабжённых специальными шипами или другими покрытиями, устраняющими проскальзывание колёс техники. Для удобства погрузки-выгрузки пол К. на стоянке стараются располагать как можно ближе к земле (обычно на уровне грузовой платформы автомобиля). Иногда этой цели достигают, снабжая шасси самолёта системой “приседания”. В полу К. устанавливают стационарные швартовочные узлы (кольца) или гнезда для вворачивания швартовочных узлов. В боковых частях К. при необходимости располагаются входные двери, окна, аварийные выходы и грузовые люки (при отсутствии заднего или переднего грузового люка).

Для перевозок грузов широкой номенклатуры (колёсная и гусеничная техника, стандартные грузовые контейнеры, поддоны, платформенные парашютно-десантные средства и т. п.) грузовые К. оснащаются десантно-транспортным оборудованием. Роликовые дорожки, замковые балки, направляющие рельсы могут быть как встроенными в пол, так и накладными, то есть установленными на специальные узлы в полу. Для обеспечения погрузочно-разгрузочных работ в полевых условиях К. иногда оснащаются верхним погрузочным оборудованием (таль или кран-балка, передвигающиеся по силовым рельсам, установленным в потолочной части К.

При создании транспортных летательных аппаратов обычно предусматривается санитарный вариант (см. Санитарный летательный аппарат) и вариант для перевозки людей в грузовой К. С этой целью на полу, в бортовых и верхней частях К. имеются устройства местного усиления и узлы крепления стоек и лент под санитарные носилки, а также бортовых и центральных сидений для людей.

На некоторых пассажирских самолётах имеются большие боковые двери и люки для погрузки-выгрузки крупногабаритных грузов, контейнеров, если такие самолёты переоборудуются в грузопассажирские или грузовые.

В СССР до появления в 50-х гг. специализированных транспортных самолётов (типа Ан-8, Ан-12) под грузовые К. приспосабливались внутренние объёмы пассажирских самолётов (Ли-2, Ил-12, Ил-14 и др.). Специальными грузовыми К. оснащены транспортные самолёты Ан-8, АН-12, Ан-26, Ан-22 “Антей”, Ил-76, АН-124 “Руслан”, Ан-225 “Мрия”, а также Локхид С-130, С-141, С-5 (США), С-160 “Трансаль” (ФРГ — Франция).

Лит.: Броуде Б. Г., Кабины транспортных самолетов и их оборудование, Л., 1962; Шандер Б. В., Устройство и оборудование кабин самолетов (вертолетов) и условия эксплуатации различных агрегатов, М., 1971; Юровицкий М. И., Компоновка кабин экипажа пассажирских самолетов, М., 1988.

А. С. Альбац, М. И. Юровицкий.

кабина отделяемая — часть фюзеляжа с гермокабиной, отделяемая при аварии от летательного аппарата; является средством спасения и выживания экипажа (см. рис.). Форма и размеры К. о. определяются типом летательного аппарата и численностью экипажа. Известны К. о. в форме носового отсека летательного аппарат и средний части фюзеляжа с кабиной. В отличие от катапультного кресла К. о. позволяет покидать летательный аппарат одновременно всем экипажем в большом диапазоне высот и скоростей, защищает от неблагоприятных внешних факторов (аэродинамических нагрузок, декомпрессии, низких температур и т. п.), упрощает снаряжение экипажа, обеспечивает плавучесть после приводнения и т. п. Основные элементы К. о.: система отделения от летательного аппарата (с использованием пиротехнических устройств), ракетный двигатель на твёрдом топливе, система стабилизации, парашютная система, система мягкой посадки и плавучести, некатапультируемые кресла с системой фиксации, средства жизнеобеспечения и другие устройства. После включения экипажем привода аварийного отделения все операции производятся автоматически. К. о. обеспечивает спасение с уровня земли и во всём диапазоне высот полёта с большими сверхзвуковыми скоростями. К. о. отличаются сложностью конструкции и большой массой, поэтому не нашли широкого применения. Один из вариантов К. о. применён на двухместном серийном самолёте Дженерал дайнемикс F-1I1 (США).

Покидание самолёта с помощью отделяемой кабины,

кабрирование (французское cabrage, от cabrer — поднимать на дыбы) — движение летательного аппарат в вёртикальной плоскости вокруг поперечной (горизонтальной) оси в сторону увеличения угла атаки (нос летательного аппарата поднимается вверх относительно местного горизонта).

“Каваниси” (Kawanishi Kokuki Kabushiki Kaisha) — авиастроительная фирма Японии; предшественница фирмы “Син мейва”.

“Кавасаки” (Kawasaki Jukogyo Kabushiki Kaisha, Kawasaki Heavy Industries Ltd — KHI) — промышленный концерн Японии с авиастроительным (летательные аппараты, двигатели) сектором. Образован в 1969 в результате слияния трёх фирм, в числе которых была и авиационная фирма “К.”, существовавшая с 1918. Она, как и другие авиационные фирмы Японии, начинала с лицензионного производства самолётов и двигателей. Свой первый самолёт (бомбардировщик и разведчик “тип 88”) построила в 1927. К известным самолётам фирмы относятся истребитель Ki-10 (первый полёт в 1935), а также широко применявшиеся во Вторую мировую войну истребители Ki-45 (1941), Ki-61 (1941; построено свыше 3000) и лёгкие бомбардировщики Ki-32 (1937), Ki-48 (1938). После войны авиационное производство было возобновлено в 1954 и в 50—60-х гг. в основном включало лицензионный выпуск американских вертолётов, самолётов и двигателей. К концу 60-х гг. на основе лицензионного противолодочного самолёта Локхид P2V-7 “Нептун” с двумя поршневыми двигателями был разработан вариант P-2J (1966) с двумя турбовинтовыми двигателями и двумя турбореактивными, а также создан военно-транспортный самолёт собственной конструкции C-1 (1970) с двумя турбореактивными двухконтурными двигателями. Основные программы 70—80-х гг.: производство самолетов P-2J и C-1; лицензионный выпуск вертолётов Кавасаки—Боинг вертол KV-107-11, CH-47J и Хьюз 500 и противолодочного самолёта Локхид P-3C “Орион”; производство многоцелевого вертолёта BK. 117 (1979), разработанного совместно с фирмой “Мессершмитт-Бёльков-Блом” (ФРГ); постройка на основе самолёта C-1 экспериментального самолёта короткого взлёта и посадки “Асука” с четырьмя турбореактивными двухконтурными двигателями; разработка реактивного учебно-тренировочного самолёта Т-4.

Казаков Василий Александрович (1916—1981) — советский государственный деятель, Герой Социалистического Труда (1963). Окончил машиностроительный техникум (1937), Всесоюзный заочный машиностроительный институт (1955). В 1937—1965 технолог, главный технолог, главный инженер авиационного завода, начальник научно-исследовательского института. В 1965—1977 заместитель министра, 1-й заместитель министра авиационной промышленности. В 1977—1981 министр авиационной промышленности СССР. Внес большой вклад в развитие авиационного приборостроения (в том числе инерциальных систем управления), в решение сложных научно-технических проблем, связанных с созданием новых образцов авиационной техники. Депутат Верховного Совета СССР с 1978. Ленинская премия (1976), Государственная премия СССР (1967). Награждён 3 орденами Ленина, орденом Трудового Красного Знамени, медалями. Имя К. носит авиационный приборостроительный завод.

В. А. Казаков.

Казанский авиационный институт (КАИ) имени А. Н. Туполева — высшее учебное заведение; готовит инженеров для авиационных, машиностроительных и приборостроительных отраслей промышленности. Основан в 1932. В 1973 институту присвоено имя А. Н. Туполева. С институтом связана деятельность таких учёных и конструкторов, как С. П. Королев, В. П. Глушко, Н. Г. Четаев, Г. С. Жирицкий, Г. В. Каменков и др. В составе института (1990): факультеты — летательных аппаратов, двигателей летательных аппаратов, систем автоматического управления и оборудования летательных аппаратов, технической кибернетики и информатики, радиотехнический с дневной и вечерней формами обучения; подготовительное отделение; факультет повышения квалификации руководящих работников и специалистов предприятий авиационной и радиопромышленности; 45 кафедр; научно-исследовательская часть, в которой 2 проблемные и 11 отраслевых лабораторий; 3 инженерных центра; музей; экспериментальное производство. В 1989/1990 в институте обучалось свыше 8 тысяч студентов; работало свыше 700 преподавателей, в том числе 52 профессора и доктора наук, 442 доцента и кандидата наук. Издаются (с 1933) “Труды” института, межвузовские сборники, а также журнал “Известия высших учебных заведений” (серия: Авиационная техника). Институт награждён орденами Трудового Красного Знамени (1967), Дружбы народов (1982).

Казанское авиационное производственное объединение имени С. П. Горбунова. Авиационный завод в Казани основан в 1932 (с 1934 — завод №124). В предвоенные годы завод строил самолёты КАИ-1, ДБ-А, ПС-124 “Максим Горький”, Ли-2, Пе-8, Пе-2. В октябре—ноябре 1941 на его территорию перебазирован из Москвы авиационный завод №22 имени С. П. Горбунова, образованный в 1927 и освоивший до этого производство многих цельнометаллических самолётов — Р-3, Р-6, И-4, ТБ-1,ТБ-3, ПС-9, ПС-35, СБ, Пе-2 (см. также статью Машиностроительный завод имени М. В. Хруничева). Объединённый завод №22 имени С. П. Горбунова в годы Великой Отечественной войны выпускал бомбардировщики Пе-8 (изготовлено 72), Пе-2 (около 10 тысяч). КБ завода возглавляли В. М. Петляков, В. М. Мясищев. В последующий период — бомбардировщики Ту-4, Ту-16, Ту-160, пассажирские самолеты Ту-104, Ил-62, Ил-62М. В 1977 на основе завода образовано ПО. Предприятие (объединение) награждено 2 орденами Ленина (1933, 1971), орденами Октябрьской революции (1977), Красного Знамени (1945).

Казанское вертолетное производственное объединение. Предприятие образовано в результате слияния Ленинградского авиационного завода №387, эвакуированного в августе 1941 в Казань, с Казанским авиационным заводом №169. Ленинградский завод №387 берет начало от основанного в 1931 завода имени Каракозова, строившего катера, мотоботы, понтоны и т. п. Включён в авиационную промышленность в 1940; освоил выпуск самолётов У-2. Казанский завод, основан в 1933 как завод обозных деталей, включён в авиационную промышленность в 1939; поставлял крылья, хвостовые оперения для самолётов И-153, нервюры, лонжероны для самолётов ЛаГГ-3. Объединенный завод №387 в годы Великой Отечественной войны изготовил 11334 экземпляра самолёта У-2 (По-2). Переоборудование учебного самолёта У-2 в лёгкий ночной бомбардировщик По-2 было проведено конструкторским отделом завода (руководитель Г. И. Бакшаев). В 1947—1951 завод строил самоходные комбайны С-4, а с 1951 ведёт производство вертолётов марки Ми (Ми-1, Ми-4, Ми-8, Ми-14, Ми-17 и их модификаций). Предприятие награждено орденами Октябрьской Революции (1971), Трудового Красного Знамени (1945). В 1979 на основе Казанского вертолётного завода образовано производственное объединение.

Казанское моторостроительное производственное объединение — берёт начало от завода №16, который образован в 1931 в Воронеже. Завод строил штурмовик ТШ-2 С. А. Кочеригина, авиационные поршневые двигатели (отечественные М-11, М-105, а также MB-4, MB-6, MB-12 французской фирмы “Рено”), осенью 1941 эвакуирован в Казань и слился там с моторостроительным заводом №27, основанным в 1939. Объединённый завод №16 в годы Великой Отечественной войны выпускал поршневые двигатели ВК-105ПФ. С 1946 перешёл на производство реактивных двигателей. В их числе РД-20, РД-500, АЛ-3, ВК-1, РД-3М, НК-4, HK-8-3, НК-8-2У, НК-86. В разные годы в КБ завода работали А. С. Назаров, С. Д. Колосов, В. П. Глушко, С. П. Королёв, П. Ф. Зубец. В 1976 на основе завода образовано производственное объединение. Предприятие (объединение) награждено орденами Ленина (1945), Октябрьской Революции (1983).

Калеп Теодор Фердинанд (Георгиевич) (1866—1913) — один из пионеров авиационного двигателестроения в России. Окончил механическое (1893) и архитектурное (1895) отделения Рижского политехнического училища. С 1910 директор рижского завода “Мотор”. В 1911, взяв за образец французский авиационный двигатель “Гном” воздушного охлаждения и существенно улучшив его конструкцию, К. создал двигатель К-60 мощностью около 45 кВт, превосходивший по надёжности французский прототип. 22 ноября (9 декабря) 1911 получил патент на этот двигатель. В 1911—1913 было построено около 100 экземпляров К-60. В 1913 —1915 на заводе “Мотор” строился более мощный (до 60 кВт) двигатель К-80. Двигатели “Калеп”, устанавливавшиеся на самолёты “Ньюпор”, “Хионн”. “Стеглау” и др. показали высокие эксплуатационные качества.

Т. Ф. Калеп.

Калинин Константин Алексеевич (1889—1938) — советский авиаконструктор. Окончил Одесское военное училище (1912), Гатчинскую военную авиационную школу (1916), Киевский политехнический институт (1925). В годы Первой мировой войны командир авиаотряда. Участвовал в Гражданской войне как лётчик Красной Армии. Строить самолёты начал в 1923 на заводе в Киеве. В 1926 возглавил КБ в Харькове. Под его руководством создано свыше 20 типов самолётов, в том числе пассажирские самолёты К-4 и К-5, санитарный К-3, а также ряд опытных самолётов. Характерной особенностью самолётов К. являлась эллиптическая форма крыла и горизонтального оперения в плане. К. — один из организаторов и первых преподавателей Харьковского авиационного института. Награждён орденом Трудового Красного Знамени. Необоснованно репрессирован; реабилитирован посмертно. См. статью Калинина самолёты.

К. А. Калинин.

Калинина самолёты. В период 1922—1938 К. А. Калининым было создано 11 самолётов. Некоторые из них строилась серийно, в том числе в нескольких модификациях, другие остались опытными и внесли свой вклад в отработку рациональных конструкций для серийных образцов или в проверку оригинальных технических решений. Основные данные некоторых самолётов приведены в таблице.

К-1 — опытный пассажирский самолёт, создан в 1925 на Ремонтно-воздушном заводе №6 в Киеве. Его схема и конструкция типичны для пассажирских самолётов Калинина. Это подкосный высокоплан с крылом эллиптической фирмы в плане, одним двигателем, закрытой кабиной экипажа и неубирающимся шасси. Конструкция смешанная, деревянно-металлическая. Фюзеляж ферменный, сварной из стальных труб, с алюминиевой и полотняной (за пассажирской кабиной) обшивкой. Крыло и оперение с деревянным каркасом и обтяжкой из полотна. Самолёт успешно прошёл испытания. Для дальнейшего развития работ Калинин получил производственную базу в Харькове.

К-2 создан в 1927, по схеме подобен K-1 но цельнометаллической конструкции (в порядке опыта, не получившего продолжения) и с более мощным двигателем. Построен в нескольких экземплярах.

К-3 — санитарный самолёт, предназначенный для перевозки двух лежачих больных, на носилках и одного сопровождающего. Создан в 1927. Первый в стране самолёт такого типа.

Несколько экземпляров использовались в санитарной авиации.

К-4 — многоцелевой самолёт, создан в 1928. Построено 22 экземпляра в пассажирском, санитарном и аэрофотосъёмочном вариантах с двигателями БМВ-IV, Юнкерс L.5 и М-6. В 1929 лётчик М. А. Снегирёв, штурман И. Т. Спирин и бортмеханик С. В. Кеглевич выполнили на самолёте К-4 “Червона Украина” сложный для того времени перелёт протяжённостью свыше 10 тысяч км (с посадками).

К-5 создан в 1929, подобен предшествующим самолётам, но увеличенных размеров (рис. 1 и рис. в таблице XI). Построено около 260 экземпляров с двигателями М-15, М.-22, М-17Ф. В 30-е гг. широко применялся для пассажирских и грузовых перевозок, а также как санитарный самолёт и для десантирования парашютистов.

К-6 — почтовый самолёт, создан в 1930 по схеме подкосный парасоль с использованием крыла, оперения, шасси и некоторых другие узлов от К-5. Доставлял из Москвы в Харьков матрицы газеты “Правда”. Серийно не строился.

К-9 (создан в 1930) и К-10 (создан в 1931, см. рис. 2) предназначались для применения в качестве лёгких связных, сельскохозяйственных, спортивных, учебно-тренировочных самолётов. Имели смешанную конструкцию, складывающиеся крылья (для хранения в небольших постройках), но отличались по схеме: К-9 — подкосный парасоль, К-10 — свободно-несущий моноплан. В серии не строились.

К-7 — тяжёлый семидвигательный бомбардировщик двухбалочной схемы (рис в таблице XII), один из крупнейших самолётов своего времени, создан в 1933. В центроплане толстого крыла располагались топливные баки и нагрузка (7—10 т бомб, а в транспортных вариантах — 100 парашютистов или 120 пассажиров). Шесть двигателей были установлены в носках крыла и один в его задней части между балками. Шестиколёсное шасси неубирающееся. Круговая оборона обеспечивалась 12 огневыми точками (4 пушки, 8 пулеметов), расположенных в различных зонах самолета. Конструкция типовая для бомбардировщиков Калинина — каркас из труб металлическая и полотняная обшивка. На завершающем этапе заводских испытаний самолет потерпел катастрофу. Предполагалось построить еще два К-7 на авиационном заводе в Воронеже, куда в 1934 было переведено КБ Калинина, однако эти работы не были завершены.

К-12 — бомбардировщик схемы “бесхвостка” (рис. 3), создан в 1936. Кили с рулями направления располагались на концах крыла, а органы управления по крену и тангажу — вдоль задней кромки крыла. Характеристики устойчивости и управляемости предварительно были изучены на специально построенном планёре аналогичной схемы. Вооружение: носовая и кормовая стрелковые установки, бомбы (до 500 кг). Самолёт построен в нескольких экземплярах.

К-13 — бомбардировшик-среднеплан с бипланным горизонтальным и двухкилевым вертикальным оперением, создан в 1937. Шасси, как и на К-12, убирающееся. Самолёт проходил лётные испытания, но в связи с арестом Калинина в 1938 работы были прекращены.

Лит.: Шавров В. Б., История конструкций самолетов в СССР до 1938 г.. 3 изд., М., 1985; Из истории авиации и космонавтики, в. 26,37, М., 1975—1979; Харьковскому авиационному — 60 лет. М., 1986.

“Каман” (Kaman Aerospace Corp.) — вертолётостроительная фирма США. Основана в 1945. До начала 60-х гг. специализировалась на разработке и постройке лёгких вертолётов с двумя перекрещивающимися винтами и системой управления несущим винтом с помощью механизации лопастей. Были построены вертолёты НТК, НОК (первый полёт в 1953) и НН-43 “Хаски”. В 80-х гг. серийно выпускала вертолёт SH-2 “Сиспрайт” (1959) одновинтовой схемы в нескольких вариантах, в том числе как палубный противолодочный и поисково-спасательный. Основные данные некоторых вертолетов фирмы приведены в таблице.

Каманин Николай Петрович (1908—1982) — советский лётчик, генерал-полковник авиации (1967), один из первых Героев Советского Союза (1934). В Советской Армии с 1927. Окончил Ленинградскую военно-теоретическую лётную школу (1928), 2-ю Борисоглебскую военную школу лётчиков (1929), Военно-воздушную академию Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1938; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского), Высшие академические курсы при Высшей военной академии (1956). В 1934 участвовал в спасении экспедиции парохода “Челюскин”. Участник советско-финляндской и Великой Отечественной войн. В ходе войны был командиром штурмовой авиадивизии, смешанного, а затем штурмового авнакорпусов. После войны в Гражданском военном флоте, ДОСААФ, командующий воздушной армией, военно-воздушных сил военного округа, заместитель начальника главного штаба Военно-воздушных сил. В 1966—1971 начальник центра подготовки космонавтов в Звёздном городке. Депутат Верховного Совета СССР в 1937—1946. Награждён 3 орденами Ленина, орденом Октябрьской Революции, 2 орденами Красного Знамени, 2 орденами Суворова 2-й степени, орденами Кутузова 2-й степени, Красной Звезды, медалями, а также иностранными орденами. Портрет смотри на стр. 265.

Соч.: Летчики и космонавты, М., 1972; Старты в небо, М., 1976.

Лит.: Водопьянов М. В., Повесть о первых героях, 2 изд., М., 1980.

Н. П. Каманин.

Каменев Сергей Сергеевич (1881-1936) — советский военачальник, командарм 1-го ранга (1935). Участник Первой мировой и Гражданской войн. В Красной Армии с 1918. Окончил Александровское военное училище (1900), Академию Генштаба (1907). Во время Гражданской войны был начальником штаба корпуса, армии, командующим войсками Восточного фронта, главнокомандующий вооруженными силами Республики (1919—1924). В 1924—1927 член Реввоенсовета СССР, начальник штаба Рабоче-крестьянской Красной Армии. В 1927—1934 заместитель наркомвоенмора и заместитель председателя Реввоенсовета СССР. С 1934 начальник Управления противовоздушной обороны и одновременно член Военного совета при Наркомате обороны СССР. Один из организаторов Осоавиахима. Активно содействовал становлению и развитию отечественной авиационной науки и техники. Член Всероссийского Центрального Исполнительного Комитета и Центрального Исполнительного Комитета СССР. Награждён орденом Красного Знамени РСФСР, Золотым боевым оружием со знаком ордена Красного Знамени РСФСР, Почётным революционным огнестрельным оружием со знаком ордена Красного Знамени РСФСР, орденами Красного Знамени Хорезмской народной советской республики, Красного Полумесяца 1-й степени Бухарской народной советской республики. Урна с прахом в Кремлевской стене.

Лит.: Каменева Н. С., Путь полководца, Киев, 1982.

С. С. Каменев.

Таблица — Вертолёты фирмы “Каман”.

камера сгорания газотурбинного двигателя — устройство, в котором в результате сгорания топлива повышается температура поступающего в него воздуха (газа). Основная К. с. турбовинтового двигателя или турбореактивного двигателя (см. рис.) располагается перед турбиной и состоит из корпуса 6, образующего полость для жаровой трубы (труб) 5, внутри которой сжигается топливо авиационное, подаваемое форсунками 2. Передняя (входная) часть жаровой трубы — так называемое фронтовое устройство 3, обеспечивающее частичное перемешивание топлива с воздухом и горячим газом, стабилизацию пламени, сжигание части топлива. Через отверстия в стенках жаровой трубы в нее вводится воздух для сжигания остальной части топлива, охлаждения продуктов сгорания и формирования совместно с газосборником 7 необходимого температурного поля газов, поступающих в турбину. Температура продуктов сгорания зависит от коэффициента избытка воздуха. Диффузор 1 тормозит поток воздуха до скорости, позволяющей осуществить эффективное горение топлива при приемлемых гидравлических потерях в К. с. Воспламенитель (или электрическая свеча) 4 служит для начального зажигания топлива. Для охлаждения жаровой трубы применяют воздушную пелену у её внутренней стенки, образуемую воздухом, проходящим через мелкие отверстия в стенке. Основные К. с. бывают трёх видов: трубчатая (одна жаровая труба расположена в корпусе трубчатого типа), кольцевая (одна общая жаровая труба кольцевой формы расположена в кольцевом пространстве, образованном наружным и внутренним корпусами), трубчато-кольцевая (жаровые трубы расположены в общем кольцевом пространстве, образованном наружным и внутренним корпусами). До 60—70-х гг. применялись главным образом трубчатые и трубчато-кольцевые К. с., затем стали использоваться более компактные кольцевые К. с.

К. с. второго контура турбореактивного двухконтурного двигателя и К. с. прямоточного воздушно-реактивного двигателя по принципу действия и устройству аналогичны форсажной камере сгорания. Работу К. с. характеризует коэффициент полноты сгорания топлива.

Лит.: Теория воздушно-реактивных двигателей, под ред. С. М. Шляхтенко, М., 1975.

В. Е. Дорошенко.

Основная камера сгорания: 1 — диффузор; 2 — топливная форсунка; 3 — фронтовое устройство; 4 — воспламенитель; 5 — жаровая труба; 6 — корпус; 7 — газосборник.

Камов Николай Ильич (1902—1973) — советский авиаконструктор, доктор технических наук (1962), Герой Социалистического Труда (1972). После окончания Томского технологического института (1923) работал на авиационном заводе, затем в мастерских “Добролёта”. С 1928 в КБ Д. П. Григоровича; принимал участие в разработке и испытаниях самолёта-торпедоносца открытого моря (ТОМ-1). Совместно с Н. К. Скржинским на общественных началах (при Осоавиахнме) создал первый в СССР винтокрылый летательный аппарат — двухместный автожир KACKP-1, название авторами “вертолётом”. В 1930 разработана модификация КАСКР-2 с более мощным двигателем. Ряд технических решений (например, шарнирное крепление лопастей, смешанная деревянно-металлическая конструкция лопасти с трубчатым лонжероном), реализованных на автожире КАСКР, впоследствии нашли широкое применение на многих советских автожирах и вертолётах. С 1932 К. работал в Центральном аэрогидродинамическом институте, где возглавил конструкторскую бригаду, создавшую боевой двухместный автожир А-7 (1934) для корректировки артогня и разведки. С 1940 К. — главный конструктор и директор первого в СССР завода по проектированию, изготовлению к ремонту автожиров (просуществовал до 1943). Была выпущена войсковая серия автожиров А-7, использовавшихся в начале Великой Отечественной войны. В 1943—1947 К. снова в Центральном аэрогидродинамическом институте, где под его руководством создан одноместный вертолёт соосной схемы Ка-8 с мотоциклетным двигателем (1947). С 1948 К. — главный конструктор вертолётного КБ. Под руководством К. разработана теория конструирования вертолётов соосной схемы, созданы вертолёты соосной схемы различного назначения (Ка-10, Ка-15, Ка-15М, УКа-15, Ка-18, Ка-25, Ка-25К, Ка-26) и аэросани “Север-2” и Ка-30. К. — автор летательного аппарата нового типа — винтокрыла Ка-22 (комбинация самолёта и вертолёта), оригинальной системы управления соосными винтами, конструкции цельнодеревянной лопасти, конструкции и технологии изготовления лопастей целиком из пластика. Государственная премия СССР (1972). Награжден 2 орденами Ленина, 2 орденами Трудового Красного Знамени, медалями. Имя К. носит Ухтомский вертолётный завод. См. статью Ка.

Соч.: Винтовые летательные аппараты, М., 1948.

Лит.: Кузьмина Л. М., Конструктор вертолетов, М., 1938.

Н. И. Камов.

Камозин Павел Михайлович (1917—1983) — советский лётчик, капитан, дважды Герой Советского Союза (1943, 1944). В Советской Армии с 1937. Окончил Борисоглебскую военную авиационную школу (1938). Участник Великой Отечественной войны. В ходе войны был командиром звена, командиром эскадрильи истребительного авиаполка. Совершил 131 боевой вылет, сбил лично 35 и в составе группы 13 самолётов противника. После войны в Гражданском воздушном флоте. Награждён орденом Ленина, 2 орденами Красного Знамени, орденами Александра Невского, Отечественной войны 1-й степени, медалями. Бронзовый бюст в Брянске.

Лит.: Реймерс Г. К., Внимание! В небе Камозин, Тула, 1975.

П. М. Камозин.

“Канадэр” (Canadair Ltd) — самолётостроительная фирма Канады. Образована в 1944 на основе авиационного отделения кораблестроительной фирмы “Канейдиан Виккерс”, которая первой в Канаде начала коммерческое производство самолётов (1923). В 1947 стала филиалом американской кораблестроительной фирмы “Электрик боут” (Electric Boat), предшественницы “Дженерал дайнемикс”, с 1976 государственная фирма, в 1986 продана корпорации “Бомбардир” (Bombardier Inc.). Выпускала транспортные самолёты, патрульный самолёт CL-28 “Аргус”, истребители F-86, F-104, F-5 (по лицензии США), истребитель CF-100 (первый полёт в 1950). В 1965 построила экспериментальный самолёт вертикального взлёта и посадки CL-84 с поворотным крылом. Основные программы 80-х гг.: производство реактивных административных самолётов “Челленджер” 600 (1978) и “Челленджер” 601 (1982, см. рис. 1); самолёта-амфибии CL-215 (1967, см. рис. 2), беспилотного разведчика CL-89 (1971), разработка новых беспилотных летательных аппаратов военного назначения.

Рис. 1. Административный самолет “Челленджер” 601

Рис. 2. Пожарный самолет-амфибия CL-2I5T.

“Канейдиан Эрлайнс” (Canadian Airlines International) — авиакомпания Канады. Осуществляет перевозки в страны Западной Европы, Азии, Южной Америки, а также в США и Австралию. Образована в 1987 в результате объединения авиакомпаний “Канейдиан Пасифик” основанной в 1942), “Пасифик уэстерн” (1946) и др. В 1989 перевезла 9,5 миллионов пассажиров, пассажирооборот 19,27 милиардов пассажиро-км. Авиационный парк — 93 самолёта.

“Кантес” (Qantes Airways Ltd) — национальная авиакомпания Австралии. Осуществляет перевозки в страны Западной Европы, Азии, Африки, Южной Америки, а также в США и Канаду. Основана в 1920, одна из старейших в мире. В 1989 перевезла 4,1 миллиона пассажиров, пассажирооборот 26,2 миллиардов пассажиро-км. Авиационный парк — 40 самолётов.

капот двигателя — часть гондолы двигателя, непосредственно к нему примыкающая. Состоит в основном из быстросъёмных конструктивных элементов (крышек, панелей), необходимых для выполнения осмотров, регламентных и ремонтных работ, а также монтажа и демонтажа двигателя (см. рис.). Подвижные элементы К. могут быть съёмными (устанавливаются на винтовых замках, невыпадающих болтах и пр.), откидными поворотными (фиксируются в открытом положении распорками, а в закрытом — быстродействующими капотными замками) либо представляют собой комбинацию съёмных и откидных панелей. Широкое применение (начиная с 30-х гг.) обтекаемых К. для закрытия поршневых двигателей было обусловлено необходимостью снижения лобового сопротивления самолёта.

Капот двигателя: 1 — откидные крышки капота; 2 — натяжные замки.

капотирование самолёта — опрокидывание самолёта на нос или на спину через нос. К. может возникнуть при резком торможении или наезде передних колёс самолёта на препятствие. К. возможно при близком расположении центра тяжести к относительно высокой стойке шасси, что характерно для лёгких, одномоторных винтовых самолётов. К. происходит, когда момент действующих на самолёт сил, включая силы инерции, относительно точки касания заторможенного пневматика или оси передних колёс оказывается направленным на пикирование.

Капрони (Caproni) Джованни Батиста (1886—1957) — итальянский авиаконструктор и промышленник. Окончил политехнический институт в Мюнхене (Германия, 1907), изучал электротехнику в Льеже (Бельгия). В 1908 построил свой первый биплан, в 1910 основал самолётостроительную фирму (см. “Капрони”). В годы Первой мировой войны фирмой выпускались тяжёлые бомбардировщики с двумя и тремя поршневыми двигателями. В 1920—1930-е гг. разрабатывались в основном самолёты военного назначения (разведчики, истребители, бомбардировщики), а также был создан ряд опытных самолётов с рекордными характеристиками. 27 августа 1940 состоялся первый полёт экспериментального самолёта Капрони-Кампини N. 1, одного из первых реактивных самолётов. В годы Второй мировой войны под руководством К. велось массовое производство военных самолетов. В начале 40-х гг. К. принадлежали или находились под его контролем около 20 фирм; его основная фирма существовала до 1950. Портрет смотри на стр. 267.

Дж. Б. Капрони.

“Капрони” (Societ{{á}} Italiana Caproni) — итальянская самолётостроительная фирма. Основана в 1910 Дж. Б. Капрони. Указанное название с 1928. В 1950 ликвидирована. В годы Первой мировой войны выпускала тяжёлые бомбардировщики [наиболее известны бипланы Ca.32 и Ca.33, триплан Ca.42 (см. рис. в таблице IX)], после войны — бомбардировщики Ca.36, Ca.44. и Ca.46. В 1929 построен опытный бомбардировщик Ca.90 с шестью поршневыми двигателями (масса 30 т, самый тяжёлый самолёт аэродромного базирования того времени, установивший ряд рекордов грузоподъёмности, см. рис. в таблице XIV). В 30-е гг. и годы Второй мировой войны большими партиями производились бомбардировщики Ca.101 (первый полёт в 1930) транспортные самолёты Ca.133 (1934), Ca.135 (1936), бомбардировщики, разведчики, многоцелевые самолёты Ca.309—316. На фирме “К.” были построены рекордный высотный самолёт Ca.161 с герметичной кабиной, достигший в 1938 высоты 17083 м, и первый итальянский реактивный самолёт Капрони-Кампини N.1 с мотокомпрессорным воздушно-реактивным двигателем (1940, см. рис. в таблице XV). Филиалом “Кефирной “Реджиан” созданы истребители Re.2000 (1939), Re.2001 (1940), Re.2000 (1942), штурмовик Re.2002 (1942). После войны попытки возобновить авиационное производство на основе фирмы не имели успеха. Созданный в 1949 шестиместный транспортн самолет Ca.193 не пользовался спросом, в 1950 фирма обанкротилась. Бывший филиал “К.” — фирма “Аэроплани Капрони Тренто” (Aeroplani Caproni Trento) в 1952 построила реактивный тренировочный самолёт F-5, но вскоре прекратила самостоятельные разработки. Небольшая фирма “Капрони-Виццола” (Саproni-Vizzola) в 1968 начала производство планеров “Калиф”, в 1980 построила реактивный тренировочный самолёт Ca.22, в 1982 вошла в состав фирмы “Агуста”.

Ю. Я. Шилов.

Капрэлян Рафаил Иванович (1909—1984) — советский лётчик-испытатель; подполковник, заслуженный летчик-испытатель СССР (1961), мастер спорта СССР международного класса (1969), Герой Советского Союза (1975). Окончил Ленинградский институт гражданской авиации (1932), Батайское лётное училище гражданской авиации (1934). Участник Великой Отечественной войны. Работал в Летно-исследовательском институте и ОКБ М. Л. Миля. Провёл лётные испытания самолёта Ту-4, вертолётов Ми-1, Ми-2, Ми-4, Ми-6, Ми-8, Ми-10, ресурсные испытания двигателей, винтов. Установил 10 мировых рекордов. В 1937 на самолёте ХАИ-1 выполнил перелёт Москва — Ташкент — Москва. Первым в Аэрофлоте налетал 1 миллион км. Награждён 2 орденами Ленина, орденами Красного Знамени, Отечественной войны 1-й степени, 2 орденами Трудового Красного Знамени, 2 орденами Красной Звезды, орденом “Знак Почёта”, медалями.

Р. И. Капрэлян.

каркас (от французского carcasse — скелет) летательного аппарата — система взаимосвязанных продольных и поперечных силовых балочно-стержневых элементов, обеспечивающих прочность, жёсткость, выносливость, живучесть и геометрическую форму летательного аппарата. Основные составляющие К. — силовой набор и связывающие его элементы. В период использования в конструкциях обшивки из полотна и фанеры жёсткость К. обеспечивалась с помощью дополнительных элементов — расчалок, раскосов, подкосов и др. Увеличение скорости полёта и внешних нагрузок потребовало совершенствования К. летательного аппарата. В крыле и оперении стали широко применяться тонкостенные конструкции и ферменно-балочные силовые схемы, обеспечивающие необходимую прочность, жёсткость и свободные объёмы для размещения топлива и оборудования. Ферменные конструкции фюзеляжа постепенно заменялись монококовыми и полумонококовыми. В летательном аппарате, имеющих повышенный ресурс и живучесть, в К. используется силовой набор, жёстко связанный (болтами, заклёпками, сваркой и т. п.) с “работающей” обшивкой. Одновременное использование силовых элементов для обеспечения прочности и создания внешней формы летательного аппарата позволяет выполнять конструкцию К. с минимальной массой.

Карман (Karman) Теодор фон (1881—1963) — учёный в области механики, член Лондонского королевского общества, других академий наук и научных обществ. Учился в Будапештском университете (1898—1902), затем в Гёттингенском университете. С 1913 профессор и директор Аэродинамического института в Ахене. Основатель и директор (1930—1949) Гуггенхеймовской аэролаборатарии Калифорнийского технологического института (США). Основные труды по самолётостроению, аэро-, гидро- и термодинамике, теории упругости и пластичности. Разработал теорию однородной изотропной турбулентности, метод расчёта пограничного слоя, полуэмпирическую теорию турбулентности, теорию профиля при дозвуковых скоростях и осесимметричного тела при сверхзвуковых скоростях и т. д. Осуществлял научное руководство строительством ряда летательных аппаратов, сверхзвуковых аэродинамических труб и баллистических установок. В 1948 учреждена премия его имени.

Соч.: Collected works, v. 1—4, L, 1956; The wind and beyond, Boston, 1967.

Т. Карман.

Кармана дорожка (по имени Т. Кармана) — то же, что вихревая дорожка.

Карпов Александр Терентьевич (1917—1944) — советский лётчик, капитан, дважды Герой Советского Союза (1943, 1944). В Красной Армии с 1939. Окончил Качинскую военную авиационную школу имени А. Ф. Мясникова (1940). Участник Великой Отечественной войны. В ходе войны был лётчиком-истребителем, командиром звена, командиром эскадрильи истребительного авиаполка. Совершил около 500 боевых вылетов, сбил лично 28 и в составе группы 8 самолётов противника, погиб в бою. Награждён орденом Ленина, 3 орденами Красного Знамени, орденом Александра Невского, медалями. Бронзовый бюст в Калуге.

Лит.: Андреев С. А., Совершенное ими бессмертно, М., 1976.

А. Т. Карпов.

карты авиационные — географические карты, предназначенные для обеспечения лётного устава навигационными данными, необходимыми при подготовке к полёту и в полёте. По назначению К. а. делятся на полётные, бортовые и специальные. Полётные карты, применяемые для самолётовождения, обычно имеют масштаб 1:1000000 или 1:2000000. При выполнении специальных полётов, связанных с отысканием малых объектов, которые не указаны на основных картах, применяются карты крупного масштаба (1:500000 и крупнее). На самолётах, оборудованных навигационным вычислительным устройством, применяются так называемые ленточные карты. Бортовые карты служат для самолётовождения с использованием радиотехнических и астрономических средств, масштаб их, как правило, 1:2000000 или 1:4000000. При подготовке к полёту и в полёте в качестве справочных применяются различн карты специального назначения (карты погоды, магнитных склонений, часовых поясов и др.).

карты погоды — географические карты, на которых условными обозначениями наносятся данные о состоянии атмосферы Земли в определенный момент времени. К. п. делятся на фактические (содержащие данные наблюдений за состоянием атмосферы) и прогностические (содержащие данные об ожидаемом состоянии атмосферы). К. п. делятся также на приземные (содержащие данные о фактическом либо ожидаемом состоянии атмосферы у земной поверхности) и высотные (содержащие данные о фактическом либо ожидаемом состоянии атмосферы на различных уровнях над земной поверхностью). В свою очередь высотные К. п. делятся на карты абсолютной барической топографии (карты AT), содержащие данные для стандартных изобарических поверхностей (например, 1000, 850, 700, 500 гПа), и карты относительной барической топографии (карты ОТ), содержащие данные для слоев атмосферы, заключённых между какими-либо изобарическими поверхностями (например, между 1000 и 500 гПа, между 700 и 300 гПа). Отдельную группу карт составляют карты особых явлений погоды (карты ОЯ), содержащие фактические либо прогностические данные, характеризующие отдельные явления (например, данные об облачности, турбулентности ясного неба, струйных течениях, высоте расположения изотермы 0{{°}}С). Наиболее “насыщенными” информацией являются приземные К. п. На них наносятся: общее количество облаков, направление и скорость ветра у поверхности Земли, горизонтальная видимость, погода в срок наблюдения, погода между сроками наблюдений, давление и температура воздуха, тип облаков, количество облаков нижнего яруса, а при их отсутствии — количество облаков среднего яруса, высота нижней границы облаков над земной поверхностью, точка росы, так называемая величина барической тенденции за последние 3 часа, характеристика барической тенденции за последние 3 часа. В зависимости от решаемой задачи кроме перечисленных данных на К. п. могут наноситься данные о количестве осадков, экстремальных температурах поверхности почвы и воздуха, состоянии поверхности почвы и высоты снежного покрова и т. д. На высотные К. п. наносятся данные, характеризующие направление и скорость ветра, температуру, дефицит точки росы, геопотенциальную высоту изобарических поверхностей либо давление на уровне поверхностей, для которых строятся карты (например, поверхности максимального ветра или тропопаузы). После нанесения данных на К. п. проводятся различные системы изолиний (изобары на приземных К. п., изогипсы на высотных К. п., изотахи на картах максимального ветра и др.), выделяются различными цветами и обозначениями зоны и станции, где имели место те или иные явления (грозы, осадки, туманы и другие), отмечаются центры циклонов и антициклонов и т. д. К. п. — одно из существующих средств метеорологического обеспечения авиации (см. также Карты авиационные).

“КАСА” (CASA, Construcciones Aeronautiсаs SA) — авиационная фирма Испании. Основана в 1923. В 1972 в состав фирмы вошла самолётостроительная фирма “Испано авиасьон СА” (Hispano Aviacion SA), в 1973 — двигателестроительная фирма “ЭНМАСА” (ENMASA). Деятельность начала с постройки лицензионного истребителя Бреге 19. В 40-х гг. выпускала немецкие истребители Мессершмитт Bf109, транспортные самолёты Юнкерс Ju-52 и др. Основные программы 80-х гг.: производство лёгкого транспортного самолёта С-212 “Авиокар” с двумя турбовинтовыми двигателями (первый полёт в 1971, см. рис.), реактивного учебно-боевого самолёта C-101 “Авиоджет” (1977), 45-местного пассажирского самолёта CN-235 (1983) с двумя турбовинтовыми двигателями для местных и коротких авиалиний, разработанного совместно с индонезийской фирмой “IPTN” (Industri Pesawat Terbang Nusantara). Фирма является участником консорциума “Эрбас индастри”.

Лёгкий транспортный самолёт С-212 “Авиокар”.

КАСКР-1 — первый советский экспериментальный автожир, построенный в 1929 авиасекцией ЦК Осоавиахима СССР по проекту Н. И. Камова и Н. К. Скржинского (см. рис. в таблице XI). Имел также название “Красный инженер”. Выполнен по схеме с крылом, хвостовым оперением и аэродинамическими органами управления (рули, элероны). Использован фюзеляж самолёта У-1. Несущий винт четырёхлопастный, расчального типа, с вертикальными и горизонтальными шарнирами, диаметр 12 м. Двигатель М-2 мощностью 88,3 кВт. Взлётная масса 950 кг, максимальная скорость 90 км/ч. Этот же экземпляр летательного аппарата после установки на него двигателя мощностью 169 кВт стал называется КАСКР-2 (1930). Максимальная скорость 110 км/ч, высота полёта до 450 м.

катапульта взлётная (латинское catapulta, от греческого katap{{é}}ltes, от kat{{á}} — сверху вниз, вниз на, против и p{{á}}llo — бросаю, швыряю) — устройство для старта летательного аппарата путём их принудительного разгона на коротком участке пути. Используется на авианесущих кораблях, обеспечивает взлёт самолётов при ограниченной длине палубы. По принципу использования энергии К. в. разделяют на пороховые, гидравлические, пневматические, роторные и паровые (наиболее распространены). Паровая К. в. (см. рис.) состоит из двух цилиндров с поршнями, жёстко соединёнными с челноком, выступающим над палубой. Длина цилиндров достигает 70—90 м. После открытия стартового клапана в цилиндры поступает пар от парового коллектора под давлением 6—8 МПа. Давление пара на поршни, создавая дополнительную силу к тяге двигателей летательного аппарата, разрывает калиброванное кольцо задержника и с перегрузкой 4—5 двигает летательный аппарат по палубе. В конце разгона челнок резко останавливается тормозным цилиндром, после чего буксирный трос отделяется от челнока и летательный аппарат взлетает. Масса паровых К. в. составляет 400—500 т. Они обеспечивают взлет летательных аппаратов массой до 37 т и скорость 250 км/ч. Стартовые устройства, аналогичные по принципу действия К. в., применяют для запуска небольших, беспилотных летательных аппаратов типа крылатых ракет и дистанционно-пилотируемых летательных аппаратов. Такие устройства состоят из тележки, наклонных направляющих рельсов и запускающего механизма. Тележку с закреплённым на ней летательным аппаратом разгоняют с помощью ракетного двигателя на твёрдом топливе, пневмоцилнндра, гидроцилиндра, пружин, резиновых шнуров или других средств. В конце разбега длиной 6—12 м тележка тормозится, а стоящий на ней летательный аппарат отделяется со скоростью 25—35 м/с.

Лит.: Короткин И. М., Слепенков З. Ф., Колызаев Б. А., Авианосцы и вертолетоносцы, М., 1972; Ларионов А. И., Несвицкий Ю. А., Надводный флот НАТО, М., 1975.

Е. П. Голубков.

Паровая взлётная катапульта: 1 — полётная палуба; 2 — тормозной цилиндр; 3 — паровой цилиндр; 4 — поршень с тормозным конусом; 5 — челнок; 6 — стартовый клапан; 7 — трубопровод от парового коллектора; 8 — задержник; 9 — буксирный трос.

катапультирование — процесс выбрасывания, принудительного направленного отделения от летательного аппарата (обычно выстреливания) катапультного кресла или кабины отделяемой с целью аварийного покидания летательного аппарата членами его экипажа. При этом отделяемой части или креслу придаётся скорость в направлении, отличном от направления полёта (обычно под углом 15—30° к вертикальной оси летательного аппарата, см. рис.). Источниками энергии при К. являются телескопический стреляющий механизм с пиропатроном, ракетный двигатель твёрдого топлива (твердотопливный ракетный двигатель) или их сочетание. В последнем случае ракетный двигатель твёрдого топлива (твердотопливный ракетный двигатель) включается в момент отделения кресла от летательного аппарата и корректирует его траекторию относительно летательного аппарата и земли (при К. на малой высоте).

Осиновные силы, воздействующие на человека при К., — перегрузки от срабатывания стреляющего механизма и скоростного напора воздуха при выходе лётчика с креслом из кабины летательного аппарата. При воздействии перегрузки вследствие прохождения по телу ударной волны деформируются тканевые структуры организма, которые после окончания действия перегрузки обычно восстанавливаются. Основные нагрузки воспринимаются костной тканью и суставно-связочнным аппаратом тела. Нарушение кровообращения, как это наблюдается при воздействии длительных перегрузок, при К. не происходит. Во избежание травм катапультные кресла снабжаются приспособлениями для фиксации тела человека в оптимальном положении.

Устойчивость организма к воздействию перегрузок определяется их значениями, продолжительностью действия, скоростью нарастания, направлением по отношению к осям тела. Так, человек в катапультном кресле выдерживает двадцатикратную перегрузку в направлении “голова — таз” при её нарастании за 0,05—0,1 с и времени действия 0,2—0,4 с; в обратном направлении — только десятикратную перегрузку. Наибольшая выносливость организма к восприятию перегрузок наблюдается в направлении “грудь — спина”. В этом случае оказывается переносимой даже сорокакратная перегрузка, нарастающая за 0,04 с. Для обеспечения безопасности К. проводится специальная наземная подготовка лётчиков: отрабатываются правильная поза при К., фиксация тела привязными ремнями, навыки предварительных и исполнительных движений и т. п.

В сочетании с катапультными креслами для защиты от декомпрессии, низких температур и других неблагоприятных факторов применяется высотное снаряжение. Важным условием безопасного К., особенно на больших скоростях и высотах полёта, является обеспечение стабилизации кресла (кабины). В качестве элементов стабилизации используют парашюты небольшого диаметра, выдвижные штанги, кили, щитки и другие устройства.

К. как способ аварийного покидания летательного аппарата впервые был применён на некоторых немецких самолётах во время Второй мировой войны, так как рост скоростей и высот полёта сделал трудным покидание самолёта “через борт” с парашютом. В дальнейшем этот способ был усовершенствован и внедрён в широких масштабах благодаря исследованиям, выполненным в СССР, Великобритании, США. К. является наиболее распространённым и эффективным способом спасения экипажа военных самолётов.

Лит.: Стасевич Р. А., Исаков П. К., Скорости, ускорения, перегрузки, М., 1956; Современные средства аварийного покидания самолета, М., 1961; Теория и практика авиационной .медицины, 2 изд., М., 1975.

П. К. Исаков, Е. П. Голубков.

Схема катапультирования: 1 — сброс фонаря; 2 — выход кресла из кабины и ввод стабилизирующего кресло парашюта; 3 — движение кресла с включённым ракетным двигателем твёрдого топлива (твердотопливный ракетный двигатель); 4 — ввод тормозного парашюта, предназначенного для стабилизированного спуска с больших высот; 5 — отделение лётчика от кресла и ввод основного парашюта лётчика; 6 — выпуск носимого аварийного запаса; 7 — приземление (приводнение) лётчика; 7 — положение летательного аппарата в момент катапультирования; 8 — положение летательного аппарата в момент ввода тормозного парашюта.

катапультное кресло — предназначается для покидания летательного аппарата по команде находящегося в нём члена экипажа, по приказу командира (на многоместных самолётах) или по сигналу специального бортового устройства. К. к. служит местом размещения и крепления члена экипажа в обычном полёте и средством спасения в аварийной ситуации. В зависимости от расположения его в летательном аппарате и направления выбрасывания различают К. к. для катапультирования вверх, вниз, лицом к потоку или спиной к потоку. Наиболее распространён первый вариант К. к. Известны К. к. закрытого типа (капсулы), когда специальные створки поворачиваются перед катапультированием и образуют оболочку вокруг лётчика, защищая его от воздействия аэродинамических нагрузок. Из-за сложности конструкции и большой массы капсулы не нашли широкого применения.

Основные элементы К. к.: регулируемая по высоте чашка (сидение), спинка, заголовник, силовой каркас, привод катапультирования, система фиксации лётчика при помощи регулируемых плечевых и поясных ремней и ограничителей разброса рук и ног, стреляющий механизм с пиропатронами, парашютная система, система стабилизации, автоматы времени — высоты и др. К. к. устанавливается на летательном аппарате в направляющих рельсах и крепится шариковым замком. После катапультирования все операции, включая раскрытие парашюта, выполняются автоматически. К. к. обеспечивают спасение экипажа на всех высотах и при всех скоростях полёта летательного аппарата, а также при катапультировании с земли. Масса К. к. в зависимости от типа и назначения летательного аппарата составляет 50—150 кг.

Е. П. Голубков.

катастрофа (от греческого katastroph{{e}} — переворот, уничтожение, гибель) — авиационное происшествие, приведшее к гибели или пропаже без вести какого-либо лица из числа находившихся на борту воздушного судна. К К. также относятся случаи гибели какого-либо лица из числа находившихся на борту в процессе аварийной эвакуации из воздушного судна.

катастрофическая ситуация — особая ситуация в полёте, при которой предотвращение гибели людей и (или) потери воздушного судна практически невозможно.

катенария (латинское catenarius — цепной, от catena — цепь) — конструкция подвески, применяемая на воздухоплавательных летательных аппаратах (нежёстких дирижаблях, привязных и свободных аэростатах некоторых типов) для равномерной передачи сосредоточенных усилий (от веса гондолы, килей и других агрегатов) на оболочку. Катенарная, или мостовая, подвеска (по типу подвески висячих мостов) образует систему, состоящую из катенарного пояса, закреплённого на оболочке (пришивкой, приклейкой), и элементов, соединяющих узлы катенарного пояса с агрегатами летательного аппарата (см. рис.). На нежёстких дирижаблях применяются внутренние катенарные пояса (передают нагрузку от гондолы или киля на верхнюю часть оболочки) и наружный пояса, соединяющие нижнюю часть оболочки с гондолой (или килем), Катенарная подвеска используется также для крепления строп оперения (см. Мягкий дирижабль), в конструкциях пневматических оперений привязных аэростатов и других частей аэростатов.

Катенарная подвеска в мягком дирижабле: 1 — узел катенарного пояса; 2 — катенарный пояс (внутренний); 3 — оболочка дирижабля; 4 — тросы подвески; 5 — гондола.

“Катэй Пасифик” (Cathey Pacific Airways) — авиакомпания Сянгана (Гонконга). Осуществляет перевозки в страны Европы, Азии, Африки, а также в США и Австралию. Основана в 1946. В 1989 перевезла 7,1 миллионов пассажиров, пассажирооборот 22,09 миллиардов пассажиро-км. Авиационный парк — 36 самолётов.

Качинская военная авиационная школа летчиков — распространенное название 1-й военной школы лётчиков имени А. Ф. Мясникова (см. Севастопольская офицерская школа авиации).

квазистационарное течение — нестационарное течение жидкости или газа при малых Струхала числах Sh = L/(Vt) < < 1. Здесь L — характерный линейный размер тела, V — характерная скорость (обычно скорость набегающего потока), t — характерное время движения. К. т. в первом приближении можно рассматривать как стационарное течение с мгновенными значениями газодинамических переменных, то есть поле течения зависит от времени как от параметра. При Sh < < l решение дифференциальных уравнений, описывающих движение среды, можно представить в виде разложений по числу Струхала, тогда главные члены разложения будут описывать К. т.

Число Струхала можно записать в виде Sh = (V/t)/(V2/L) и трактовать его как отношение масштаба локального ускорения, характеризующего изменение скорости во времени, к масштабу конвективного ускорения, характеризующего изменение скорости в пространстве. При движении летательного аппарата на значение локального ускорения накладываются ограничения, обусловленные физическими возможностями человека переносить перегрузки; кроме того, большие перегрузки наблюдаются в полёте при относительно больших скоростях (выход из пикирования, боевой разворот и другие манёвры самолёта). На конвективное ускорение никаких ограничений не накладывается. Поэтому в большинстве случаев при движении самолётов и других летательных аппаратов число Струхала Sh < < 1, и квазистационарный подход широко применяется для определения поля течения около движущегося тела, его аэродинамических характеристик и аэродинамического нагревания его поверхности.

В. А. Башкин.

Квасников Александр Васильевич (1892—1971) — советский учёный в области авиационных двигателей, профессор (1927), доктор технических наук (1958), заслуженный деятель науки и техники РСФСР (1945). Окончил Томский технологический институт (1919). В 1915—1917 военный лётчик; впервые на самолёте “Ньюпор” установил зажигательные ракеты, которыми сбил немецкий аэростат. С 1922 заведовал кафедрой “Тепловые двигатели”, с 1931 — кафедрой “Теория авиадвигателей” в Московском авиационном институте. Открыл явление резкого увеличения тяги пульсирующим реактивным выхлопом при эжектировании воздуха. Государственная премия СССР (1968). Награждён 2 орденами Ленина и орденом Трудового Красного Знамени. Портрет смотри на стр. 269.

А. В. Квасников.

Кейли (Cayley) Джордж (1773—1857) — английский учёный и изобретатель, один из основоположников теории полёта самолёта. С 1796 изучал летательные аппараты тяжелее воздуха, в 1799 предложил концепцию летательного аппарата с фиксированным крылом и отдельным от него движителем. В 1804 построил модель планёра с крестообразным управляемым хвостовым оперением и скользящим грузом в носу для изменения положения Центра тяжести (см. рис. в таблице 1). Применил ротативную установку для испытаний крыла при различных углах атаки (1804), объяснил стабилизирующий эффект поперечного V-образного крыла (1805), изучал влияние кривизны профиля и перемещение центра давления крыла (1807—1909), предложил форму тела минимального лобового сопротивления (1809). Объяснил механику создания тяги концами крыла птицы (1808). В 1807—1809 изучал двигатели на горячем воздухе или пороховых газах, предложил использовать их на летательных аппаратах. В публикациях 1809—1811 изложил основные принципы полёта планера и самолёта. Разработал ряд проектов орнитоптеров, вертолётов, конвертоплана. Предложил колесное шасси со спицами. В 1816—1817 числе разработал проекты дирижаблей, в том числе полужёсткой конструкции. Предложил истовое оперение с рулями высоты и направления (1849). B 1809 и 1849—1853 строил натурные планеры, на которых впервые выполнялись короткие подлёты человека. К. занимался также вопросами оптики, электричества, баллистики и др. Его труды долго оставались неизвестными.

Дж. Кейли.

Келдыш Мстислав Всеволодович (1911—1978) — советский учёный в области математики и механики, академик АН СССР (1946; член-корреспондент 1943), член Президиума с 1953, вице-президент в 1960—1961, президент АН СССР в 1961—1975, трижды Герой Социалистического Труда (1956, 1961, 1971). Окончил Московский государственный университет (1931), работал в Центральном аэрогидродинамическом институте (1931—1946), Московском государственном университете (профессор с 1937), Математическом институте имени В. А. Стеклова АН СССР (1934—1937, 1944—1946). Руководитель отделения (1953—1966), затем директор (1966—1978) Института прикладной математики АН СССР.

К. принадлежит значительное число фундаментальных исследований в области математики, вычислительной математики, аэро- и гидродинамики. Большой цикл работ К. посвящён колебаниям и автоколебаниям авиационных конструкций; теории флаттера самолёта, методам его численного расчёта, моделированию в аэродинамических трубах, практическим мерам борьбы с ним; явлению шимми — самовозбуждающимся колебаниям носового колеса самолёта, простым конструктивным решениям его устранения. В области аэродинамики К. исследовал влияние сжимаемости среды на аэродинамические характеристики обтекаемых тел и обобщил Жуковского теорему о подъёмной силе. К. принадлежат фундаментальные исследования по гидродинамике движения тел под поверхностью жидкости и волновому сопротивлению, теории удара тела о жидкость, теории колеблющегося крыла.

В математике основные труды К. посвящены теории функций действительного и комплексного переменного, уравнениям с частными производными, функциональному анализу. Важные результаты, полученные К. в области теории функций комплексного переменного, широко используются при решении задач прикладных аэро- и гидродинамики. К. внёс существенный вклад в развитие вычислительной и машинной математики, создание эффективных методов численного решения задач в различных областях науки и техники.

К. внёс выдающийся вклад в создание эффективных методов решения задач атомной и космической техники, выступил одним из инициаторов развёртывания работ по исследованию космоса и созданию ракетно-космических систем, возглавив с середины 50-х гг. разработку теоретических предпосылок вывода искусственных тел на околоземные орбиты, а в дальнейшем — полётов к Луне и планетам Солнечной системы. Руководил научно-техническим советом по координации деятельности научно-исследовательских институтов и КБ по созданию первого искусственного спутника Земли; внёс большой вклад в осуществление программ пилотируемых космических полётов, в постановку научных проблем и проведение исследований околоземного космического пространства, межпланетной среды, Луны и планет, в решение многих проблем механики космических полётов и теории управления, навигации и теплообмена.

К. — председатель Комитета по Ленинским и Государственная премия при Совете Министров СССР (1961—1978), действительный и почётный член многих иностранных академий и научных обществ. Депутат Верховного Совета СССР с 1962. Золотые медали имени М. В. Ломоносова АН СССР (1976) и имени К. Э. Циолковского АН СССР (1972). Ленинская премия (1957), Государственная премия СССР (1942, 1946). Награждён 7 орденами Ленина, 3 орденами Трудового Красного Знамени, медалями, а также иностранными орденами.

В 1978 АН СССР учредила Золотую медаль имени М. В. Келдыша “За выдающиеся научные работы в области прикладной математики и механики, а также теоретические исследования по освоению космического пространства”. В Москве сооружены памятники учёному (в том числе в начале Аллеи космонавтов), создан кабинет-музей в Институте прикладной математики Российской АН. В Московском государственном университете учреждена стипендия имени М. В. Келдыша. Его имя носит Институт прикладной математики, Именем К. назван кратер на Луне. Урна с прахом в Кремлёвской стене.

Соч.: Некоторые общие свойства полипланов, М., 1936; Вибрации на самолете, М., 1942 (совм. с др.); Шимми переднего колеса трехколесного шасси, М., 1945; Приложения теории функций комплексного переменного к гидродинамике и аэродинамике. М., 1964 (совм. с др.).

М. В. Келдыш.

керамические материалы — неметаллические материалы из тугоплавких неорганических соединений, получаемые спеканием, плазмо-химическим и другими методами. К. м. обладают высокой температуроустойчивостью, жаропрочностью, твёрдостью, электроизоляционными и другими ценными свойствами. Наибольшее распространение в авиастроении получили керамические защитные покрытия, теплоизоляционные и конструкционные К. м.

К. м. по химическому составу разделяют на кислородсодержащие — кварцевые, кремнезёмистые, алюмосиликатные, корундовые, из чистых оксидов, например, алюминия (Al2O3), циркония (ZrO2), и бескислородные — на основе карбидов, нитридов, боридов, силицидов. Для получения авиационных К. м. используются синтетические исходные продукты, характеризующиеся особо высокой химической чистотой и дисперсностью частиц исходных материалов; производство К. м. отличается точностью дозировки.

Защитные покрытия из К. м. получают по шликерно-обжиговой технологии (тугоплавкие эмали, реакционно-спекаемые, реакционно-отверждаемые), плазменным напылением (из чистых оксидов Al2O3, ZrO2), конденсацией из газовой фазы (карбиды, нитриды) и другими методами с целью защиты металлических конструкций от газовой коррозии, повышения эрозионной стойкости, придания поверхностям изделий заданных оптических, электрических и других характеристик при высоких температурах.

Теплоизоляционные К. м. получают на основе супертонких волокон либо с применением поро- и пенообразователей (пористость до 90—95%). Керамические волокна, обладающие высокой термостойкостью (1400{{°}}С и более) и прочностью, получают на основе Al2O3, ZrO2, диоксида кремния, муллита.

Конструкционные К. м. на основе нитрида и карбида кремния служат для изготовления лопаток турбин, роторов и других теплонагруженных деталей авиационных двигателей. Диски и лопатки, например, для турбин газотурбинного двигателя, из нитрида кремния (Si3N4) и присадок (оксид иттрия) обжигают в печи при атмосферном давлении, а затем подвергают изостатическому прессованию. По другой технологии детали получают реакционным спеканием, при котором порошок кремния в среде азота превращается в Si3N4. Разрабатываются технологии получения конструкционных К. м. из нитрида алюминия, борида титана, ZrO2.

С. С. Солнцев.

керосин (английское kerosene, от греческого k{{ē}}r{{ó}}s — воск) — фракция нефти, выкипающая в диапазоне температур 200—300{{°}}С. Получают перегонкой нефти или крекингом тяжёлых нефтепродуктов; плотность 790—860 кг/м3. Иногда К. неправильно называют реактивные топлива, содержащие кроме керосина бензиновые, лигроиновые, дизельные фракции нефти (см. Топливо авиационное).

Кёртисс (Curtiss) Глен Хаммонд (1878—1930) — американский летчик, авиаконструктор и промышленник, один из пионеров авиации. Известный вело- и мотогонщик, рекордсмен, К. в 1902 стал владельцем завода мотоциклов, где спроектировал поршневый двигатели к первому дирижаблю для армии США. В 1907 стал руководителем Авиационной экспериментальной ассоциации, где построил самолёт, на котором в 1908 впервые в США совершил полёт на 1 милю (за 1 мин 42 с); впоследствии устанавливал рекорды и выигрывал крупные авиационные соревнования. В 1910 на базе своих предприятий основал фирму “Кёртисс”, выпускавшую самолёты и авиационные двигатели, позже организовал авиационное производство и в Канаде. В 1912 построил первую в США летающую лодку. Организовал ряд лётных школ. В 1914 построил летающую лодку “Америка” для трансатлантического перелёта, однако первый такой перелёт (с несколькими промежуточными посадками) был совершён в 1919 на другом его гидросамолёте NC-4.

Г. Х. Кёртисс.

“Кёртисс” (Curtiss Aeroplane and Motor Co.) — одна из старейших авиационных фирм США. Основана в 1910 Г. X. Кёртиссом. Деятельность начала с разработки гидросамолётов. Гидросамолёт А-1 (биплан с поршневым двигателем мощностью 56 кВт, с толкающим винтом, см. рис. в таблице IV) — первый самолёт, поступивший на вооружение Военно-морских сил США. За годы Первой мировой войны выпустила около 10 тысяч самолётов (в том числе свыше 6 тысяч учебно-тренировочных JN-4) и 75 тысяч двигателей. В 1919 на гидросамолёте NC-4 (первый полёт в 1918, биплан с четырьмя поршневыми двигателями мощностью 298 кВт каждый, длина самолёта 20,85 м, размах крыла 38,4 м, максимальная взлётная масса около 13 т, скорость около 150 км/ч, см. рис. в таблице IX) совершён первый трансатлантический перелёт (с несколькими посадками). В 20-е гг. фирма строила в основном военные самолёты (истребители, разведчики, бомбардировщики, в том числе палубные и гидросамолёты), был создан ряд рекордных моделей для международных соревнований (например, самолёт R. В, с убирающимся шасси). В 1929 вошла в состав фирмы “Кёртисс-Райт” (Curtiss-Wright Corporation) в результате слияния с двигателестроительной фирмой “Райт аэронотикзл” (Wright Aeronautical Corporation). Основной продукцией остались военные самолёты, в том числе истребитель Р-40 “Уорхоук” (первый полёт в 1938, см. рис. в таблице XX; построено около 15 тысяч в различных модификациях, в том числе P-40N:1 поршневой двигатель мощностью 1010 кВт, длиной 10,16 м, размах крыла 11,38 м, взлётная масса до 4,014 т, скорость до 610 км/ч), палубный пикирующий бомбардировщик SB2C “Хеллдайвер” (первый полёт в 1940, построено свыше 7 тысяч), военно-транспортные самолёты С-46 “Коммандо” (1940, свыше 3 тысяч). В годы Второй мировой войны фирма имела 17 заводов и персонал около 180 тысяч человек; выпустила около 23 тысяч самолётов и большое число поршневых двигателей. После 1945 построен ряд опытных самолетов, но фирме пришлось отказаться от собственных крупных авиационных программ. В 1951 её самолётостроительное отделение было закрыто, и в дальнейшем деятельность фирмы в авиационной области ограничивалась производством компонентов конструкций силовых установок (жидкостных ракетных двигателей, ракетных двигателей твёрдого топлива, роторных двигателей), систем управления, полуфабрикатов.

В. В. Беляев.

кессон (от французского caisson — ящик) — тонкостенная конструкция балочного типа с замкнутым одно- или многосвязным контуром поперечного сечения (см. рис.). Обшивка К. воспринимает нормальные и касательные напряжения. Для сохранения формы поперечного сечения и распределения усилий между контурами К. имеет диафрагмы или нервюры, ограничивающие одновременно депланацию поперечных сечений. К. — наиболее распространённый тип авиационных конструкций (см., например, крыло).

Кессон: а — односвязный; б — двухсвязный; 1 — стенки; 2 — интегральные панели; 3 — диафрагма; 4 — стрингеры; 5 — обшивка.

Киевский институт инженеров гражданской авиации — высшее учебное заведение, осуществляющее подготовку авиационных инженеров для технической лётной эксплуатации воздушных судов гражданской авиации. Институт выпускает бортинженеров, а с 1988 начал подготовку инженеров-механиков (пилотов). Основан в 1933 на базе авиационного факультета Киевского политехнического института как Киевский авиационный институт (в 1947—1964 — Киевский институт Гражданского военного флота). В составе института (1990); факультеты — механический, авиационного радиоэлектронного оборудования, авиационного оборудования, автоматики и вычислительной техники, аэропортов, авиационных работ и перевозок, авиационной наземной техники, лётной эксплуатации воздушных судов, подготовительный для иностранных граждан; заочный; повышения квалификации руководящих работников и специалистов гражданской авиации; деканат по работе с иностранными учащимися; подготовительное отделение; научно-исследовательский сектор, 19 отраслевых лабораторий, учебная авиационно-техническая база; база эксплуатации радиотехнического оборудования и связи; станция испытаний авиационных двигателей; экспериментальный цех; музей истории гражданской авиации. Имел филиалы в Иркутске, Ташкенте, Ростове-на-Дону, учебно-консультационные пункты в Минске, Новосибирске, Хабаровске, Якутске, Алма-Ате, Красноярске. В 1989/1990 учебном году в институте обучалось свыше 14 тысяч студентов, работало около 1 тысяч преподавателей, в том числе около 70 профессоров и докторов наук и около 450 доцентов и кандидатов наук. Издаются (с 1961) межвузовские тематические сборники научных трудов института. Награждён орденом Трудового Красного Знамени (1966).

Киевский механический завод (КМЗ) имени О. К. Антонова — берёт начало от ОКБ-153, которое было создано в 1946 при Новосибирском авиационном заводе на базе филиала ОКБ-115 А. С. Яковлева. ОКБ-153 возглавил О. К. Антонов; в 1952 оно переведено в Киев, в 1966 переименовано в КМЗ. В 1991 на базе КМЗ образован Авиационный научно-технический комплекс имени О. К. Антонова. Предприятие награждено орденами Ленина (1966) и Трудового Красного Знамени (1975). О летательных аппаратах, созданных на предприятии под руководством Антонова (имя которого оно носит с 1984) и его преемника П. В. Балабуева, смотри в статье Ан.

Киевское авиационное производственное объединение — берёт начало от основанного в 1920 Государственного авиационного завода №12 (с 1921 — Ремонтно-воздушный завод №6). На предприятии в 1925 под руководством К. А. Калинина был создан пассажирский самолёт К-1, а в 30-е гг. строились автожир А-4 Центтального аэрогидродинамического института, пассажирские самолёты ХАИ-1 и ОКО-1 (разработан в КБ завода под руководством В. К. Таирова), разведчик Р-10. Накануне Великой Отечественной войны завод, ставший самолётостроительным (№43), изготавливал крылья и оперения для истребителей МиГ-1, выпускавшихся заводом №1 в Москве. В августе 1941 завод перебазирован из Киева на Новосибирский авиационный завод, где в годы войны строились истребители Як. В ноябре 1943 в Киеве началось восстановление завода (под №473), который сначала производил сборку истребителей Як-3, Як-9 из готовых частей, а затем освоил производство вертолётов Г-4 И. П. Братухина и Ми-1 М. Л. Миля. С 1950 перешёл на выпуск самолётов семейства Ан: Ан-2, Ан-8, Ан-24, Ан-26, Ан-30, Ан-32, Ан-72, Ан-124 и (совместно с другими предприятиями отрасли) Ан-225. Предприятие награждено орденом Трудового Красного Знамени (1970). В 1974 на основе завода образовано производственное объединение.

Киевское общество воздухоплавания — Учреждено 16 (29) октября 1909 по инициативе профессор Киевского политехнического института (КПИ) Н. Б. Делоне (ученик Н. Е. Жуковского по Московскому университету). Создано на базе Воздухоплавательного кружка КПИ. Руководящими органами были совет и правление. При К. о. в. работали научно-технический и спортивный комитеты. 23 мая (5 июня) 1910 в Киеве на Сырецком ипподроме состоялся первый в России полёт аэроплана отечественной конструкции “Кудашев-1”. Построил биплан и летал на нём профессор А. С. Кудашев. В 1909—1914 киевскими конструкторами создано около 30 типов летательных аппаратов. В К. о. в. работали известные ученые, конструкторы и лётчики Г. П. Адлер, Д. П. Григорович, А. Д. Карпека, братья А. И., Е. И. и И. И. Касяненко, Кудашев, П. Н. Нестеров, И. И. Сикорский и др. Проводились работы и в области воздухоплавания: Ф. Ф. Андерс построил дирижабль “Киев”, С. Н. Халютин — аэростат “Припять”, приспособленный для подъема метеорологических приборов и автоматических многокамерных фотоаппаратов. На Куренёвском аэродроме К. о. в. на общественных началах готовило пилотов-авиаторов и механиков. В Киеве проводились воздухоплавательные выставки К. о. в. (1911, 1912) и Всероссийская выставка (1913). Издавались сборники статей членов К. о. в. С марта 1914 журнал “Автомобильная жизнь и авиация” стал органом К. о. в. Были учреждены медали, почётные дипломы и свидетельства К. о. в. Золотыми медалями награждены Жуковский и Нестеров. В 1916 деятельность К. о. в. прекратилась.

кили-шайбы — неподвижные поверхности многокилевого вертикального оперения, устанавливаемые на концах стабилизатора и служащие для обеспечения путевой устойчивости летательного аппарата. К.-ш. применены на самолётах Пе-2, Ту-2, Ан-22, -225 и других летательных аппаратах.

киль (голладское kiel, английское keel) — аэродинамическая поверхность летательного аппарата, являющаяся основной частью вертикального оперения и предназначенная для обеспечения путевых устойчивости (см. Боковая устойчивость) и, в некоторых случаях, управляемости летательного аппарата. При однокилевом оперении К. устанавливается на хвостовой части фюзеляжа в плоскости симметрии летательного аппарата. При неподвижном К. путевая управляемость (балансировка и осуществление манёвра) обеспечивается шарнирно укреплённым на нем рулём направления. При переходе от до- к сверхзвуковым скоростям полёта эффективность руля направления (см. Эффективность органов управления) существенно уменьшается, поэтому на манёвренных сверхзвуковых самолётах иногда применяют целиком поворотный К. (без руля направления), обеспечивающий как путевую устойчивость, так и путевую управляемость летательного аппарата. Конструкция К. аналогична конструкции крыла. Для обеспечения надлежащей путевой устойчивости на некоторых типах самолётов устанавливаются по два и три К., которые могут располагаться на крыле, фюзеляже, горизонтальном оперении или хвостовых балках. См. также Гребень аэродинамический, Кили-шайбы.

Кинасошвили Роберт Семёнович (1899—1964) — советский учёный, профессор (1949), доктор технических наук (1953), заслуженный деятель науки и техники РСФСР (1960). После окончания Московского государственного университета (1924) и Московского авиационного института (1930) работал в Центральном институте авиационного моторостроения (с 1939 начальником отдела, затем лаборатории, с 1954 заместитель начальника института). В 1931—1963 участвовал в создании многих отечественных авиационных двигателей и обеспечении их прочности. В 1938—1948 разработал методы расчета на усталостную прочность деталей поршневых авиационных двигателей, в 1947—1963 — методы расчёта на прочность дисков турбин и других деталей газотурбинного двигателя. Государственная премия СССР (1949). Награжден 2 орденами Ленина, орденами Трудового Красного Знамени. Красной Звезды, медалями.

Р. С. Кинасошвилли.

кинетика физико-химическая (от греческого kin{{ē}}tik{{ó}}s — приводящий в движение) — теория неравновесных макроскопических процессов в различных средах, Статистическая К. ф.-х. основана на представлении о молярном строении вещества. Её наиболее разработанным разделом является кинетическая теория газов. Неравновесные процессы опиваются функциями распределения молекул, составляющих среду, по их скоростям, координатам и другим характеристикам. Соответствующим усреднением функции распределения находятся любые макроскопические величины, в том числе, газодинамические переменные. Одночастичные функции распределения удовлетворяют кинетическим уравнениям например Больцмана уравнению или его решениям на смеси многоатомных газов при наличии бимолекулярных химических реакций. Эти уравнения применимы для расчёта существенно неравновесных процессов, в том числе течений при Кнудсена числе Kn{{≥}}1 в разреженных газов динамике. Методом Чепмена — Энскога из кинетических уравнений выводятся уравнения газодинамики для неравновесных течений, соотношения, описывающие переноса явления (см. также Переносные свойства среды) и позволяющие определять скорости химических реакций. Коэффициент в этих уравнениях выражаются через газодинамические переменные и параметры, характеризующие взаимодействие и возбуждение молекул. Для сложных химических реакций и процессов взаимодействия газов с поверхностями статистической К. ф.-х. развита значительно слабее.

Феноменологическая К. ф.-х. позволяет описывать более широкий класс явлений, близких к термодинамически равновесным, и получать общие соотношения, но при этом используются эмпирические коэффициенты.

Лит. смотри при статье Кинетическая теория газов.

В. С. Галкин.

кинетическая теория газов — раздел физики, изучающий явления в газах статистическими методами, рассматривающий газ как совокупность молекул, заданным образом взаимодействующих между собой, с внешними полями и ограничивающими поверхностями. К. т. г. изучает неравновесные явления; исследованием равновесных состояний занимается статистическая физика. В отличие от “классического” изложения К. т. г. ниже основной акцент сделан на аэродинамические, а не на общефизические проблемы.

Распределение молекул по скоростям v в некоторой точке r в момент времени t определяется функцией распределения (ФР) f(v, r, t), удовлетворяющей основному для К. т. г. Больцмана уравнению. Описание явлений на молекулярном уровне (микроуровне) чрезвычайно сложно из-за многомерности задачи, которая в общем случае семимерна, так как ФР зависит не только от времени и координат (как газодинамические переменные), но и от компонентов скоростей молекул. В то же время получаемая информация для большинства приложений излишне детальна. Поэтому к молекулярно-кинетическому описанию обращаются лишь тогда, когда задача не может быть рассмотрена на макроуровне с меньшим числом измерений. Одна из основных задач К. т. г. состоит в установлении круга явлений, которые могут быть строго описаны на макроуровне, в выводе соответствующих уравнений и граничных условий для макровеличин.

Макровеличины, в том числе все привычные газодинамические переменные, могут быть выражены через ФР: плотность {{ρ}} = m{{}}fdv, скорость потока u = (m/{{ρ}}){{}}fdv, температура T = (2m/3k{{ρ}}){{}}(mc2/2)fdv, компоненты тензора напряжений Pij = m{{}}cicjfdv, вектор потока теплоты q = {{}}(mc2/2)c/dv и т. д.; k — постоянная Больцмана, c = v—u — тепловая (собственная) скорость молекул, m — их масса. Как из уравнения Больцмана, так и феноменологическим путём можно получить уравнения сохранения массы, импульса и энергии (см. также Сохранения законы):

{{формула}}

{{формула}}

Эти уравнения не замкнуты, так как число неизвестных больше числа уравнений. В общем случае не существует локальных связей между “лишними” переменными Pij и q1 и пятью газодинамическими функциями (переменными) {{ρ}}, u1 и T.

В К. т. г. фундаментальную роль играет Кнудсена число Kn. Если Kn < 1, то решение уравнения Больцмана можно построить в виде асимптотического ряда f = f(0) + f(1) + f(2), в котором функции f(k) зависят от {{ρ}}, u1, и T и их производных по координатам до k-го порядка (так называемый метод Чепмена—Энскога). Подставляя этот ряд в выражения для Pij и qj, получим

{{формула}}

и т. д. ({{μ}} — динамическая вязкость, {{λ}} — теплопроводность, p — давление). Подстановка полученных соотношений в уравнения сохранения приводит к замкнутой системе уравнений для {{ρ}}, u1и T: при учёте одного члена разложения получаются Эйлера уравнения, двух — Навье — Стокса уравнения, трёх — уравнения Барнетта и т. д. Приведённые связи (переносные свойства среды) известны и в механике сплошной среды, где они постулируются. К. т. г. не только устанавливает эти связи, но определяет область их применимости (Kn < < 1) и позволяет вычислить входящие в них {{μ}} и {{λ}}, которые в континуальной теории берутся из эксперимента. Это особенно важно для смесей газов и газов с внутренними степенями свободы, обладающих более сложными переносными свойствами: благодаря диффузии состав смеси в течении меняется от точки к точке, так что невозможно заблаговременно “заготовить” коэффициент переноса, их необходимо рассчитывать в каждой точке одновременно с расчётом течения.

Число Кнудсена может быть выражено через более привычные газодинамического подобия критерии (Маха число М и Рейнольдса число Re): Kn ≈ M/Re. Так как континуальное макроскопическое описание и уравнения газовой динамики справедливы при Kn{{}}0, то они справедливы, например, при M = const и Re{{→∞}} (течение типа пограничного слоя) или при Re = const и М{{}}0 (медленные течения типа течения Стокса) и не справедливы, если М и Re одного порядка. В классической газовой динамике на поверхностях твёрдого тела или жидкости используются условия прилипания — равенство скоростей и температур газа и конденсирующей фазы. Эти условия не следуют из основных постулатов механики сплошных сред и привносятся из эксперимента или дополнительных посылок. В действительности имеет место зависящее от их природы и состояния взаимодействие молекул с поверхностью, определяющее связь функций распределения падающих и отражённых молекул. Если газ не наводится в равновесии с поверхностью, то упомянутая выше ФР, ведущая к газодинамическому описанию, не удовлетворяет этой связи. Следовательно, около стенки всегда имеется слой Кнудсена толщиной порядка длины свободного пробега молекул l, течение в котором не подчиняется законам газовой динамики. Решение уравнения Больцмана в слое Кнудсена связывает истинные микроскопические условия на стенке с газодинамическим течением вне этого слоя, устанавливая для него фиктивные макроскопические граничные скольжения условия на стенке и условие температурного скачка. При рассмотрении течения вне слоя Кнудсена истинное распределение скоростей или температур в слое несущественно. Хотя получаемое с указанными граничными условиями решение уравнений Навье — Стокса внутри слоя Кнудсена отличается от истинного, потоки теплоты и импульса (напряжение трения) определяются с точностью, соответствующей точности самих уравнений. Граничные условия скольжения и температурного скачка тем больше отличаются от условий прилипания, чем больше Kn. При Re > > l, М = O(1) их учёт даёт поправки к классической теории пограничного слоя того же порядка, что и учёт вытесняющего действия этого слоя. Особое место занимает скольжение газа (крип), вызванное градиентом температуры вдоль поверхности, так как приводит оно не к поправкам, а к новым явлениям, отсутствующим при выполнении условий прилипания (термофорез, радиометрический эффект и т. д.). Наличие градиента температуры вдоль трубки вызывает течение вдоль неё (термомеханический эффект).

Ещё более важно исследование слоя Кнудсена, если на поверхности происходит испарение или химическая реакция. Например, расход испаряющегося материала, вычисленный по классической формуле Герца — Кнудсена, полученной без учёта слоя Кнудсена, существенно отличается от расхода, следующего из решения уравнения Больцмана в слое (см. рис.).

Наряду с основным характерным размером L в течении могут существовать “собственные” характерные размеры Li < L, например, толщина пограничного слоя {{ = }}~(Ll)1/2 или ударной волны ~l. Если Li > > l, то течение может быть описано в рамках теории сплошной среды, однако точность описания падает с увеличением Kn = l/Li. Структура ударной волны должна рассматриваться в рамках уравнения Больцмана.

Выше предполагалась справедливость при Kn < < 1 уравнений Навье — Стокса, получаемых при учёте двух членов разложения ФР по числу Кнудсена. Однако если M < < l, Re = O(l) и перепад температур {{Δ}}Т/Т = O(1), то в газе возникают (получаемые при учёте третьего члена разложения) температурные напряжения того же порядка, что и вязкие. Этими напряжениями обусловлены новый тип естественный конвекции, имеющей место в отсутствие массовых сил (термострессовая конвекция), и другие явления.

В смесях газов для каждого компонента записывается своё уравнение Больцмана, столкновительный член которого учитывает как столкновения молекул данного сорта между собой, так и с молекулами другие сортов, а также переход молекул данного сорта в другой (химической реакции). Молекулы, находящиеся в разных квантовых состояниях, рассматриваются как молекулы разных сортов, а переход в другие квантовое состояние — как химическая реакция. Средняя длина пробегав lRi (вероятность, эффективное сечение, число столкновений) для iхимической реакции или квантового перехода (неупругие процессы) может существенно отличаться от средней длины пробега lc для упругих столкновений. В каждой точке течения имеется несколько чисел Кнудсена Kn = lc/Li и KnRi = lRi/L, которые могут меняться от точки к точке. Обобщённым методом Чепмена — Энскога показано, что макроскопическое газодинамическое описание возможно при Kn{{}}0 и произвольном отношении {{α}} = le/lRi. В общем случае для числовой плотности молекул в данном квантовом состоянии получается своё макроскопическое уравнение (поуровневая кинетика). Иногда удаётся свести задачу к меньшему числу уравнений для осреднённых величин. С изменением {{α}} вид уравнений не изменяется, но меняются коэффициент переноса. Исследование явлений при не малых числах Кнудсена в последние десятилетия быстро развивалось и в результате выделилось в самостоятельный раздел К. т. г. и газовой динамики — разреженных газов динамика. В самостоятельную дисциплину также выделилась кинетическая теория плазмы.

Лит.: Чепмен С., Каулинг Т., Математическая теория неоднородных газов, пер. с англ. М., 1960; Коган М. Н., Динамика разреженного газа. Кинетическая теория, М., 1967; Лифшиц Е. М., Питаевский Л. П., Физическая кинетика в кн.: Ландау Л. Д., Лифшиц Е. М., Теоретическая физика, т. 10, М., 1979; Климонтович Ю. Л., Статистическая физика, М., 1982.

М. Н. Коган.

Зависимость интенсивности испарения от плотности пара над стенкой: 1 — истинное изменение; 2 — расчёт по формуле Герца — Кнудсена; u{{}}, n{{}}, T{{}} — скорость, числовая плотность молекул и температура пара над стенкой; nв — числовая плотность молекул насыщения при температуре стенки; {{ψ}} = n{{}}u{{}}/nв(2kT/m)1/2

кинотеодолитные измерения — см. в статье Внешнетраекторные измерения.

Кирсанов Пётр Семёнович (1919—1991) — советский военачальник, маршал авиации (1932), заслуженный военный лётчик СССР (1966). В Советской Армии с 1936. Окончил Качинскую военную авиационную школу (1938), Военно-воздушную. академию (1950; ныне имени Ю. А. Гагарина), Военную академию Генштаба Вооруженныж Сил СССР (1958). Участник советско-финляндской и Великой Отечественной войн. В ходе войны был заместителем командира и командиром эскадрильи, инструктором-лётчиком Главного управления боевой подготовки фронтовой авиации Военно-воздушных сил. Совершил 216 боевых вылетов, сбил лично 8 и в составе группы 6 самолётов противника. После войны командир авиадивизии (1952—56), командующий воздушной армией (1967—1970), заместитель главнокомандующего Военно-воздушных сил (1970—1979), в 1979—1988 на ответственных должностях в Военно-воздушных силах, затем военный инспектор. Награждён орденами Ленина, Октябрьской Революции, 5 орденами Красного Знамени, 2 орденами Отечественной войны 1-й степени, 3 орденами Красной Звезды, орденом “За службу Родине в Вооружённых Силах СССР” 3-й степени, медалями.

П. С. Кирсанов.

Кирхгоф (Kirchhoff) Густав Роберт (1824—1887) — немецкий физик, член Берлинской АН (1874), иностранный член-корреспондент Петербургской АН (1862). Окончил Кёнигсбергский университет. С 1850 профессор. Разработал общую теорию неравномерного произвольного движения твёрдого тела в безграничной несжимаемой идеальной жидкости и одним из первых применил (и значительно развил) теорию функций комплексных переменных к исследованию плоских безвихревых движений такой жидкости. Один из основоположников теории обтекания жидкостью тел с отрывом струй. Предложил схему обтекания тел с отрывом струй (см. Гельмгольца — Кирхгофа теория обтекания).

Соч.: Механика. Лекции по математической физике, перевод с нем., М., 1962.

Г. Р. Кирхгоф.

Кирхгофа теория обтекания — см. Гельмгольца—Кирхгофа теория обтекания.

кислородное оборудование — комплекс средств для защиты экипажа, пассажиров и других лиц, участвующих в полете, от кислородной недостаточности, связанной с пониженным парциальным давлением кислорода во вдыхаемом воздухе при низком давлении в кабине (см. Высотная болезнь), а также от воздействия продуктов сгорания в случае пожара. Различают К. о. стационарное, переносное, спасательное.

Стационарное К. о. подразделяется на индивидуальное (для членов экипажа) и коллективное (для пассажиров). Состоит из кислородно-дыхательной аппаратуры (КДА), источника кислорода, запорно-редуцирующих устройств и соединительной арматуры (см. рис.). КДА предназначена для подачи кислорода и регулирования его расхода и давления под кислородной маской в зависимости от высоты полёта. Существует аппаратура лёгочно-автоматического действия (подача кислорода в маску лишь при вдохе) и непрерывного действия (струйная подача). Первая более экономична, применяется, как правило, для экипажа; вторая — аварийная (для пассажиров, в спасательном К. о. и т. п.). По условиям дыхания (давлению подводимого кислорода) различают аппараты без избыточного давления и с избыточным относительно окружающего воздуха давлением (используются на высотах более 12 км для обеспечения необходимого парциального давления кислорода в лёгких), причём на высотах более 14,5 км для дыхания под избыточным давлением необходимо применение специального снаряжения — высотно-компенсирующих костюмов и гермошлемов или скафандров (см. Высотное снаряжение).

Переносное К. о. применяется при передвижениях членов экипажа в разгерметизированной кабине или при использовании дымозащитных масок, а также в терапевтических целях для пассажиров, нуждающихся в дополнительном кислородном питании. Состоит из упрощённого аппарата (с непрерывной или периодической подачей кислорода) и баллона вместимостью 2—3 л.

Спасательное К. о. применяется при покидании самолёта на больших высотах. К этому оборудованию относятся парашютные кислородные приборы, размещаемые в специальном кармане ранца парашюта, либо кислородные приборы, которые совместно с аварийным запасом кислорода находятся в чашке катапультного кресла. Запас кислорода в спасательном К. о. рассчитан на 10—15 мин непрерывной подачи.

В качестве источников кислорода применяются баллоны с давлением 14,7 или 20,6 МПа, газификаторы с жидким кислородом, твёрдые источники кислорода, в которых связанный кислород выделяется в результате термохимического разложения вещества (например, хлората натрия) под воздействием высокой температуры запального устройства, бортовые кислорододобывающие установки, повышающие концентрацию кислорода в воздухе, отбираемом от двигателя летательного аппарата или специального компрессора.

Норма расхода кислорода на 1 человека в 1 мин определяется в зависимости от расчётной высоты (давления) в кабине. Для контроля запаса и расхода кислорода применяются указатели запаса, индикаторы подачи, манометры.

Лит.: Средства спасения экипажа самолета, 2 изд., М., 1975; Системы обеспечения жизнедеятельности летательного аппарата, М., 1981.

Р. Х. Тенищев, В. М. Евдокимов.

Схема стационарных систем кислородного оборудования: а — для членов экипажа; б — для пассажиров (аварийная); 1 — кислородная маска; 2 — кислородный прибор; 3 — регулятор подачи кислорода; 4 — запорно-редуцирующее устройство; 5 — датчик давления; 6 — заправочное устройство, 7 — источник кислорода; 8 — индикатор давления, 9 — индикатор подачи; 10 — маски, автоматически выбрасываемые из блока масок при аварийной разгерметизации; 11 — блок масок,

Кишкин Сергей Тимофеевич (р. 1906) — советский ученый-металловед, академик АН СССР (1966; член-корреспондент 1960), заслуженный деятель науки и техники РСФСР (1957). Окончил Московское высшее техническое училище (1931). С 1934 в Всесоюзном институте авиационных материалов. В 1935—1948 преподавал в Московском высшем техническом училище (с 1943 профессор), в 1948—1960 заведующий кафедрой Московского авиационного института. Основные исследования в области металловедения и физики металлов. Участвовал в создании жаропрочных сплавов для газотурбинных двигателей и высокопрочных конструкционных сталей для летательного аппарата. В период Великой Отечественной войны в соавторстве с другими специалистами разработал авиационную броню для штурмовика Ил-2 и истребителей. Золотая медаль имени Д. К. Чернова АН СССР (1988). Ленинская премия (1984), Государственная премия СССР (1942, 1949, 1968). Награжден орденами Ленина, Октябрьской Революции, 4 орденами Трудового Красного Знамени, медалями.

Соч.: Физические основы металловедения, М., 1955 (совм. с др.); Влияние облучения на структуру и свойства конструкционных металлов, М., 1958; Исследование строения металлов методом радиоактивных изотопов, М., 1959 (совм. с др.).

С. Т. Кишкин.

Для дальнейшего чтения нажмите кнопку