Д

ДА (Дегтярёв авиационный) — один из первых советских авиационных пулемётов. Создан в 1928 В. А. Дегтярёвым на основе пехотного ручного пулемёта ДП. Калибр 7,62 мм, скорострельность 780 выстрелов в 1 мин. масса пулемёта 8,8 кг. Применялся до середины 30-х гг. главным образом в качестве оборонительного вооружения на бомбардировщиках и разведывательных самолётах.

давление гидродинамическое — скалярная величина p, определяющая поверхностные силы в идеальной жидкости (газе) и равная нормальному напряжению pn, приложенному к произвольно ориентированной площадке к взятому с обратным знаком. В покоящихся вязкой несжимаемой и сжимаемой жидкостях из условия равновесия среды следует, что в ней могут возникать только нормальные напряжения, значения которых не зависят от ориентации площадки. В этом случае Д. г. определяется так же, как и для идеальной жидкости: p = -p.

В движущейся вязкой несжимаемой жидкости нормальные напряжения pxx, pyy, pzz, приложенные к площадкам, ортогональным декартовым осям х, у, z, зависят от ориентации элементарной площадки, и Д. г. определяется как среднее арифметическое диагональных членов тензора напряжений, взятое с обратным знаком,

{{формула}}

Таким образом Д. г. совпадает с термодинамическим давлением, входящим в уравнение состояния среды.

В движущейся же вязкой сжимаемой жидкости Д. г. определяется выражением:

{{формула}}

где V — вектор скорости, {{μ}} — динамическая вязкость, {{λ}} — вторая вязкость. Для несжимаемой жидкости divV = 0, и второе соотношение автоматически переходит в первое. Для сжимаемой жидкости divV {{}} 0 и, следовательно, в общем случае Д. г. отличается от термодинамического давления. Для того, чтобы они совпадали, необходимо сделать допущение;

{{формула}}

(гипотеза Дж. Стокса). В большинстве прикладных задач гипотеза Стокса, по-видимому, справедлива и обычно используется при решении Навье — Стокса уравнений. Однако в тех случаях, когда в потоке имеют место релаксационные процессы (химические реакции, движение газа сложной молекулярной структуры и т. п.), гипотеза Стокса не выполняется и термодинамическое давление не совпадает с Д. г. Для исследования таких течений вторая, или объёмная вязкость часто вводится следующим образом:

{{формула}}

физически она отражает свойство изотропной жидкости, связанное с диссипацией энергии в изотермической жидкости из-за изменения объёма с конечной скоростью,

В. А. Башкин.

давление звука — постоянное давление, испытываемое телом, находящимся в стационарном звуков поле. Д. з. пропорционально звуковой энергии и, следовательно, квадрату звукового давления, но значительно меньше этого давления.

давление на грунт — отношение нагрузки (веса летательного аппарата) к площади опорной поверхности шасси (колеса, лыжи, полоза). При этом динамическое Д. на г. (при посадке летательного аппарата) может превышать статическое давление более чем в 3 раза. Значение Д. на г. определяет выбор размеров и типа шасси при проектировании самолётов, предназначенных для посадки на аэродромы определенного типа, например, грунтовые, а также способность аэродрома принимать самолёты различного класса. Аэродромные покрытия характеризуют допускаемым Д. на г. — максимальными значением давления, при котором ещё обеспечивается проходимость летательного аппарата по взлётно-посадочной полосе. Оно должно быть ниже предельной прочности грунта. Допускаемое Д. на г. для мягкого, мокрого грунта 0,3 МПа; для сухого грунта 0,4—0,6 МПа; для твёрдого покрытия взлетно-посадочной полосы — 0,9—1,8 МПа.

давление торможения — то же, что полное давление.

Д’аламбер (D'Alembert) Жан Лерон (1717—1763) — французский математик, механик, философ-просветитель и энциклопедист, член Парижской АН (1754), Петербургской АН (1764) и других академий. В “Трактате о динамике” (1743) сформулировал принцип, позволяющий при учёте инерционных сил применить к задачам динамики механических систем более простые методы статики. В “Трактате о равновесии и движении жидкости, предназначенном продолжить трактат о динамике” (1744) высказал положение о равенстве нулю сопротивления тела при его движении в идеальной жидкости (см. Д'Аламбера — Эйлера парадокс). Под его руководством были проведены многие экспериментальные исследования по сопротивлению движению тел, результаты которых показали, в частности, пропорциональность сопротивления квадрату скорости и площади миделевого сечения тела.

Д'аламбера — Эйлера парадокс (по имени Ж. Л. Д'Аламбера и Л. Эйлера) — равенство нулю сопротивления аэродинамического для тела конечного размера, обтекаемого безвихревым, установившимся, не отрывающимся от тела потоком идеальной жидкости при отсутствии в нём особенностей (стоков, источников, изолированных вихрей, вихревой пелены и т. п.). Это утверждение, противоречащее практическому опыту даже при обтекании тел жидкостями с очень малыми вязкостями, и получило название парадокса. Впервые оно было высказано Д'Аламбером (1744) применительно к обтеканию сферы, а его доказательство было дано Эйлером (1745), который указал, что сопротивление тела связано в основном со срывом потока в кормовой части тела. Позднее справедливость Д. — Э. п. была доказана для всех тел конечного размера.

Сопротивление тела полубесконечного размера определяется характером поведения контура тела на бесконечности и не зависит от формы его носовой части. Так, например, для плоских тел с уравнением контура y{{-}}xm при x{{→∞}} (Ox, Oy — декартовы оси координат, ось Ox совпадает с направлением набегающего потока) Д. — Э. п. имеет место при m < 0,5; при m = 0,5 тело обладает конечным сопротивлением, а при m > 0,5 — бесконечно большим, что говорит о невозможности существования течения около таких тел. Д. — Э. п. указывает на то, что тела при соответствующем выборе их формы могут иметь очень малое сопротивление при движении в жидкости или газе при больших Рейнольдса числах.

В. Л. Башкин.

дальность видимости на взлётно-посадочной полосе — см. в статье Видимость.

дальность видимости на ВВП — см. Видимость на ВВП.

дальность полета летательного аппарата — расстояние, измеренное по земной поверхности, которое летательный аппарат пролетает от взлёта до посадки при израсходовании определенного запаса топлива. Д. п. является одной из основных летно-технических характеристик летательного аппарата. Д. п.. включает расстояние, пройденное летательным аппаратом при наборе высоты крейсерского полёта, в крейсерском режиме полёта и при снижении. На Д. п. летательного аппарата оказывают влияние различны факторы: полётная масса, профиль полёта, режим работы двигателей, метеорологические условия и др. В зависимости от располагаемого запаса топлива и задачи полёта различают перегоночную дальность полёта, практическую дальность полёта, техническую дальность полёта. Наибольшая Д. п. реактивного самолёта достигается при полёте с дозвуковой скоростью на больших высотах; полёт на малых высотах или со сверхзвуковой скоростью примерно вдвое уменьшает её значение.

Для увеличения Д. п. широко используются подвесные топливные баки и заправка топливом в полёте.

Данилин Сергей Алексеевич (1901—1978) — советский штурман, генерал-лейтенант-инженер (1943), Герой Советского Союза (1937). В Советской Армии с 1919. Окончил Московскую высшую аэрофотограмметрическую школу (1921). С 1922 в Научно-испытательном институте Военно-воздушных сил. В 1937 совместно с М. М. Громовым и А. Б. Юмашевым совершил перелёт Москва — Северный полюс — Сан-Джасинто (США). В 1943—1944 начальник Научно-испытательного института специальной служб Военно-воздушных сил, в 1944—1951 заместитель начальника Государственного научно-исследовательского института и начальник управления Военно-воздушных сил. Один из организаторов штурманской службы в Военно-воздушных силах СССР, Разработал методику слепых полётов и посадки, бомбометания из-за облаков. В 1951—1953 помощник главнокомандующего Военно-воздушных сил по радиотехнической службе, в 1953—1959 начальник управления Военно-воздушных сил. Депутат Верховного Совета СССР в 1937—1946. Награждён 2 орденами Ленина, орденами Красного Знамени, Суворова 2-й степ., Отечественной войны 1-й степени, 2 орденами Красной Звезды, медалями. Д. — один из первых советских лётчиков, получивших награду Международной авиационной федерации — медаль А. де Лаво (1937).

Соч.: Аэронавигация, 3 изд., М., 1942.

С. А. Данилин.

“Дан-Эр” (Dan-Air Services) — авиакомпания Великобритании. Осуществляет перевозки в страны Западной Европы и Ближнего Востока. Основана в 1953. В 1989 перевезла 5,8 миллионов пассажиров, пассажирооборот 8,87 миллиардов пассажиро-км. Авиационный парк — 55 самолётов,

Дассо (Dassault, до 1949 Блок, Bloch) Марсель (1892—1986) — французский авиаконструктор и промышленник. Окончил высшую авиационную школу (1913), проходил военную службу в авиационной лаборатории в Шале-Медон, где участвовал в проектировании самолётов. В 1916 разработал воздушный винт, которым оснащались многие французские самолёты Первой мировой войны. В 1917 на основанной вместе с А. Потезом (Н. Potez) фирме построил свой первый истребитель-биплан SEA 4, выпускавшийся серийно. В 1931 основал фирму “Блок”, выпускавшую транспортные самолёты, бомбардировщики и истребители и национализированную в 1937. В 1940 был арестован, в 1944 заключён в концлагерь Бухенвальд. В 1945 воссоздал фирму, которая после слияния в 1971 с фирмой “Бреге” получила название “Дассо-Бреге”. Под руководством Д. были разработаны известные сверхзвуковые истребители серии “Мираж”, стратегический бомбардировщик “Мираж” IV, реактивные административные самолёты “Мистер-Фалькон”, построен ряд опытных и экспериментальных самолётов (всего около 90). В последние годы жизни занимал на фирме должности технического директора и советника. Награждён медалью Гуггенхеймов (1976).

М. Дассо

“Дассо” (Avions Marcel Dassault) — caмолётостроительная фирма Франции. Ведёт начало от фирмы “Блок” (Avions М. Bloch), основанной в 1931 М. Блоком (см. Дассо М.) и в 1937 национализированной. В 1945 образована новая фирма “Блок” (Societe des Avions M. Bloch), вскоре сменившая название на “Д.”. В 1971 “Д.” вошла в состав фирмы “Дассо-Бреге”. К наиболее известным самолётам относятся: бомбардировщики M.B.200 (первый полет в 1933) , M.B.210 (1934) и M.B.131 (1934), истребитель M.B.152 (1938, см. рис. в таблице XXI), разведчик M.B.174 (1939), пассажирские самолёты M.B.300 с тремя поршневыми двигателями (1935), M.B.220 с двумя поршневыми двигателями (1935) и M.B.160 с четырьмя поршневыми двигателями (1937). В 1949 создан реактивный истребитель M.D.450 “Ураган”, затем истребители со стреловидным крылом “Мистер” (1952, смотри рис. в табл. XXXI) и “Супер мистер” (1955). Наиболее известными самолётами фирмы стали сверхзвуковой истребитель-бесхвостка “Мираж” III (1956, см. рис. в таблице XXXII) и его варианты “Мираж” 5 и “Мираж” 50. В 1959 создан сверхзвуковой стратегический бомбардировщик “Мираж” IV (см. рис. и табл. к статье “Дассо-Бреге”), в 1966 — многоцелевой истребитель “Мираж” F-1. К гражданской продукции фирмы относятся пассажирский самолёт “Меркюр” (1971) и реактивные административные самолёты “Мистер-Фалькон” (производство с начала 60-х гг.). Создан ряд экспериментальных самолётов, в том числе самолёт вертикального взлёта и посадки “Бальзак” и “Мираж” III-V, истребители “Мираж” G и G8 с крылом изменяемой стреловидности.

“Дассо-Бреге” (Avions Marcel Dassault-Br{{é}}guet Aviation) — самолётостроительная фирма Франции. Образована в 1971 в результате слияния фирм “Дассо” и “Бреге”. С 1981 под контролем государства, в 1990 переименована в “Дассо авиасьон” (Dassault Aviation). Основные программы 70—80-х гг.: производство истребителей серии “Мираж” — “Мираж” III, 5 и 50 (выпущено свыше 1400, смотри рис. в табл. XXXII), “Мираж” F-1, “Мираж” 2000 (см. рис. в табл. XXXVII), палубного истребителя-бомбардировщика “Супер этандар”, истребителя-бомбардировщика “Ягуар” (в консорциуме “СЕПЕКАТ”), учебно-боевого самолёта “Альфа джет” (с “Дорнье”, см. рис. 1), административных реактивных самолётов серии “Мистер-Фалькон” (к 1990 выпущено около 1000, см. рис. 2), морской патрульного самолёта “Атлантик” ATL2 (с рядом фирм западноевропейских стран), постройка и испытания экспериментального истребителя “Рафаль” А (1986, см. рис, 3) и его опытного образца (1991), проектирование воздушно-космического самолёта “Гермес” (совместно с фирмой “Аэроспасьяль”). Всего с 1945 фирмами “Бреге”, “Дассо” и “Д.-Б.” выпущено свыше 6000 самолётов, создано 92 опытных и 78 предсерийных образцов. Основные данные некоторых самолётов фирмы приведены в таблице.

Ю. Я. Шилов.

Бомбардировщик “Мираж” IV

Рис. 1. Учебно-боевой самолёт “Альфа джет”.

Рис. 2. Административный самолёт “Мистер-Фалькон” 900

Рис. 3. Экспериментальный истребитель “Рафаль” А.

“дача” руля — резкое (ступенчатое) отклонение одного из органов управления на некоторый постоянный угол с сохранением его в течение 5—10 с при неизменном положении остальных органов управления. Используется для исследования характера реакции летательного аппарата на резкие отклонения рычагов управления при оценке его динамической управляемости и устойчивости.

ДБ — принятое в СССР обозначение ряда созданных в 30-х гг. самолётов типа “дальний бомбардировщик”. Серийно выпускались ДБ-3 и его модификации конструкции С. В. Ильюшина (см. Ил) и ДБ-240 В. Г. Ермолаева. Небольшой серией строился самолёт ДБ-А (1936) — модифицированный под руководством В. Ф. Болховитинова самолёт ТБ-3. ДБ-2 разработан в КБ А. Н. Туполева бригадой П. О. Сухого (см. Ту). На его модифицированном варианте ДБ-2Б “Родина” в 1938 выполнен рекордный перелет женским экипажем в составе В. С. Гризодубовой, П. Д. Осипенко и М. М. Расковой. ДБ-ЛК — экспериментальный самолёт типа “летающее крыло” конструкции В. Н. Беляева (1940).

двигатель авиационный — тепловой двигатель для приведения в движение летательных аппаратов (самолётов, вертолётов, дирижаблей и пр.). С момента зарождения авиации и до конца Второй мировой войны единственным практически используемым Д.а. был поршневой двигатель внутреннего сгорания (поршневой двигатель), образующий с воздушным винтом (движителем) винтомоторную установку самолёта. В процессе развития авиационной техники Д. а. непрерывно совершенствовались в направлениях повышения мощности, снимаемой с единицы рабочего объема цилиндров (литровая мощность), абсолютной мощности, развиваемой двигателем на земле, высотности, уменьшения удельной массы (отношение массы конструкции к мощности) и улучшения экономичности [уд. расход топлива в кг/(кВт-ч)]. Характерные значения перечисленных параметров, полученные путём осреднения показателен двигателей наиболее известных серийных моделей для каждого периода времени, приведены в таблице.

До 1917 Россия не имела собственно авиадвигателестроения. На нескольких заводах собирались и ремонтировались поршневые двигатели иностранных конструкций. С первых же послереволюционных лет в стране начали создаваться группы и коллективы, в которых разрабатывались различные типы поршневых двигателей. Коренной перелом в развитии двигателестроения наступил в конце 20-х — начале 30-х гг. В 1930 создан Центральный институт авиационного моторостроения (ЦИАМ), в котором объединились кадры конструкторов и исследователей, начавших активную работу по созданию и отработке прогрессивных конструкций поршневого двигателя. Уже в начале тридцатых годов насчитывалось несколько заводов, оснащённых первоклассным оборудованием и выпускавших двигатели различных типов, в том числе лицензионные. Созданные при заводах КБ совершенствовали выпускаемые двигатели и разрабатывали новые оригинальные конструкции. Многие КБ возглавили конструкторы, переведённые из ЦИАМ, который уже с 1935 начал заниматься только научными исследованиями. Вскоре СССР по техническому уровню авиадвигателестроения вышел в ряд передовых стран мира. Свидетельством этому явились многочисленные рекорды дальности, грузоподъёмности, скорости и высоты, установленные советскими лётчиками в предвоенные годы.

В СССР и за рубежом выпускались поршневые двигатели жидкостного и воздушного охлаждения. Первые характеризуются расположением цилиндров в ряд вдоль оси двигателя. С увеличением мощности число рядов увеличивалось: появились V-образные, X-образные и даже Ж-образные двигатели с числом рядов 2, 4 и 6. Каждый ряд содержал по 4—6 цилиндров, расположенных раздельно или объединённых в блоки с общей рубашкой, в которой циркулировала охлаждающая жидкость. Двигатели таких схем разрабатывались в КБ В. Я. Климова, А. А. Микулина, В. А. Добрынина, в то время как в КБ А. Д. Швецова выпускались двигатели воздушного охлаждения, в которых цилиндры располагались радиально по 5—9 в одной плоскости (звезда). Цилиндры снабжались рёбрами и дефлекторами для интенсификации охлаждения встречным потоком воздуха или специальным вентилятором. Наиболее мощные двигатели воздушного охлаждения имели 2 и даже 4 ряда радиально расположенных цилиндров.

Для увеличения мощности и высотности двигателей в 30—40-х гг. применялись системы наддува при помощи приводных: центробежных нагнетателей с регулируемой степенью наддува по высоте. Улучшение показателей поршневых двигателей достигалось также использованием энергии выпускных газов для привода турбокомпрессоров, служивших ступенью системы наддува. На скоростных самолётах для утилизации энергии выпускных газов с успехом применялись реактивные выпускные патрубки, создававшие дополнительную тягу. Значительное повышение показателей поршневых двигателей было получено в результате улучшения рабочего процесса в цилиндрах, оптимизации фазораспределения, зажигания, формы камеры сгорания, перехода от карбюраторных схем смесеобразования к непосредственному впрыску. Были разработаны системы так называем гильзового распределения, позволившие устранить впускные и выпускные клапаны.

К середине 40-х гг. поршневые двигатели достигли очень высокого уровня совершенства. Один из таких поршневых двигателей — двигатель ВД-4К конструкции Добрынина, созданный вскоре после войны, — имел мощную систему наддува и турбины, преобразующие энергию выпускных газов в полезную работу, передаваемую на вал двигателя, Повышение эффективности и мощности двигателей в сочетании с прогрессом в области аэродинамики и авиации в целом позволили заметно увеличить высотность и скорость летательных аппаратов. Самолёты-истребители периода Второй мировой войны достигали высот более 10 км и скоростей полёта 700—750 км/ч.

Однако требование дальнейшего увеличения высотности и скорости уже не могло быть удовлетворено винтомоторной группой с поршневыми двигателями. Ограничение возможностей поршневых двигателей обусловливалось необходимостью значительного увеличения мощности двигателя для компенсации возраставшего лобового сопротивления и падения коэффициент полезного действия винта при приближении скорости полёта к скорости звука.

Существенный рост скорости и высоты полёта стал возможным в связи с появлением силовых установок на базе газотурбинных воздушно-реактивных двигателей (ВРД) и жидкостных ракетных двигателей (ЖРД). Двигатели обоих типов начали применяться в авиации в конце Второй мировой войны, однако в дальнейшем ЖРД сохранились лишь в ракетостроении, в то время как в авиационной технике во всё возрастающем объёме стали использовать ВРД, которые вытеснили поршневые двигатели сначала в военной, а потом и в гражданской авиации на летательных аппаратах большинства типов. В 80-х гг. поршневые двигатели применялись лишь на легкомоторных спортивных и учебных самолётах и на лёгких вертолётах.

Причина перехода от поршневых двигателей к ВРД лежит в особенностях скоростных характеристик этих двигателей. Радикальное отличие скоростных характеристик ВРД от характеристик винтомоторной группы с поршневыми двигателями заключается в том, что у поршневых двигателей мощность на валу и, следовательно, тяговая мощность винта PV мало зависят от скорости полёта, поэтому с увеличением скорости V тяга P соответственно уменьшается. В ВРД в первом приближении не мощность PV, а тяга Р не зависит от скорости в широком диапазоне её изменения (рис. 1). Иными словами, мощность ВРД с ростом скорости полёта растёт, и именно это открыло пути радикального увеличения скорости полёта самолётов. Применение ВРД позволило сначала освоить околозвуковой скорости полёта, а затем достичь скоростей, в 2—3 раза превышающих скорость звука.

В 80-х гг. в эксплуатации в мире находились несколько типов газотурбинных двигателей, каждый из которых по схеме и параметрам оптимизирован для условий эксплуатации самолётов заданного назначения. Так, магистральным пассажирским самолётам с дозвуковой крейсерской скоростью наиболее соответствует турбореактивный двухконтурный двигатель (ТРДД) с большой степенью двухконтурности, а на самолетах местных воздушных линий и на вертолётах широко применяются турбовинтовые двигатели и турбовальные двигатели. Для самолётов со сверхзвуковой крейсерской скоростью полёта целесообразен двигатель с малой степенью двухконтурности или даже одноконтурный турбореактивный двигатель (ТРД). Для самолётов с широким диапазоном условий крейсерского полёта (истребители, бомбардировщики) целесообразен одно- или двухконтурный двигатель с форсажной камерой сгорания (ТРДФ, ТРДДФ), используемой для разгона и полёта на сверхзвуковой скорости.

Отечественные газотурбинные двигатели, разработанные под руководством А. М. Люльки, Климова, Микулина, Добрынина, А. Г. Ивченко, С. П. Изотова, Н. Д. Кузнецова, В. А. Лотарева, П. А. Соловьёва, С. К. Таманского, О. Н. Фаворского и др., обеспечили высокий уровень летно-технических характеристик и эффективности летательным аппаратам советской военной и гражданской авиации.

Газотурбинные двигатели во все возрастающей степени используются не только для получения прямой и обратной тяги, но также и для создания подъёмной силы или увеличения подъёмной силы несущих поверхностей летательного аппарата — крыльев. Так, например, расположение двигателей самолета Ан-72 над крылом в передней его части позволяет, используя эффект Коандэ, отклонять реактивную струю вниз вслед за опусканием закрылков, что создаёт вертикальную составляющую тяги, направленную вверх (см. Коандэ закрылок). Взаимодействие струи с поверхностью крыла также способствует увеличению коэффициент его подъемной силы (см. Энергетическая механизация крыла). В некоторых случаях целесообразно отбирать от двигателя часть воздуха и выпускать его через специальные щели в задней кромке крыла, что также приводит к увеличению коэффициент подъёмной силы (эффект суперциркуляции).

Созданы двигатели с поворотными соплами (подъёмно-маршевые двигатели), позволяющие осуществлять вертикальный взлет и посадку. Существуют двигатели, спроектированные специально для работы в вертикальном положения и действующие только в процессе вертикального или укороченного взлёта и посадки, (подъёмные двигатели). Они имеют малые удельный вес и высоту, что позволяет размешать их в фюзеляже самолёта без увеличения его миделя. Существуют и другие методы использования двигателя для осуществления вертикального взлёта самолётов, которые позволяют сочетать в летательном аппарате положительные свойства самолётов и вертолётов (см., например, Преобразуемый аппарат).

Для скоростей, соответствующих Маха числу полёта М{{}} > 3—3,5, рассматриваются комбинированные схемы двигателей, сочетающие в себе газотурбинную часть, используемую для взлёта и полёта на малых скоростях, и прямоточную, работающую на максимальных скоростях полёта (турбопрямоточные двигатели). Классификация двигателей авиационного назначения приведена на рис. 2.

Дальнейшее усовершенствование авиационных газотурбинных двигателей происходит в направлении повышения параметров термодинамического цикла — температуры газов перед турбиной, степени повышения давления, повышения коэффициента полезного действия основных узлов при одновременном увеличении их аэродинамической нагруженности. Это позволяет уменьшить число ступеней компрессора и турбины и соответственно снизить трудоёмкость производства авиационных двигателей. Большой прогресс достигнут в увеличении надёжности и ресурса авиационных двигателей. Эти характеристики, важные с позиций безопасности полетов и экономики эксплуатации, непрерывно улучшаются. Совершенствуется также эксплуатационные и ремонтная технологичность двигателей.

С. М. Шляхтенко.

Рис. 1. Зависимость тяги от скорости полёта.

Рис. 2. Классификация авиационных двигателей.

двигатель внутреннего сгорания (ДВС) — тепловой двигатель, внутри которого происходит сжигание топлива и преобразование части выделившейся теплоты в механическую работу. К ДВС относятся поршневые, газотурбинные, прямоточные, ракетные и различные комбинированные двигатели. Термин “ДВС” применяют преимущественно к поршневым двигателям. См. также Двигатель авиационный.

двигатель изменяемого рабочего процесса — авиационный газотурбинный двигатель, в котором путём широкого регулирования элементов проточного тракта (направляющих аппаратов компрессоров, сопловых аппаратов турбин, сопла и пр.), а также применением дополнительных узлов, отключаемых и переключаемых в процессе работы (камеры сгорания в наружном контуре, клапаны перепуска, турбовентиляторные приставки и пр.), осуществляется адаптация режима работы двигателя к условиям полёта.

Степень двухконтурности таких двигателей изменяется в более широких пределах, чем у обычных турбореактивных двухконтурных двигателей, и многие схемы Д. и. р. п. допускают переход с режимов работы по схеме турбореактивного двухконтурного двигателя (турбореактивного двухконтурного двигателя с форсажной камерой) на режимы работы турбореактивного двигателя (турбореактивного двигателя с форсажной камерой). Схема, показанная на рис. 1, позволяет представить многообразие возможных принципиальных схем Д. н. р. п. Эти схемы могут быть созданы на основе исходного газогенератора.

Д. и. р. п. обладают лучшей экономичностью, чем турбореактивные двухконтурные двигатели с форсажной камерой, на сверхзвуковых скоростях полёта, при взлёте — разгоне и на дозвуковых скоростях полёта на форсажных режимах; на дозвуковых скоростях полёта с выключенной форсажной камерой удельный расход топлива близок к удельному расходу топлива в турбореактивном двухконтурном двигателе с форсажной камерой и заметно меньше, чем в турбореактивном двигателе (рис. 2). Другим важным преимуществом Д. и. р. п. перед турбореактивным двухконтурным двигателем с форсажной камерой и турбореактивным двигателем является низкий уровень шума при взлёте и наборе высоты. Указанные свойства Д. и. р. п. создают возможность их применения на многорежимных самолётах с большой продолжительностью полёта на сверх- и дозвуковых скоростях.

Рис. 1. Принципиальная схема двигателя изменяемого рабочего процесса с регулируемыми элементами: 1 — вентилятор; 2 — направляющий аппарат; 3 — створка; 4 — компрессор; 5 — камера сгорания. 6 — сопловой аппарат; 7 — форсажная камера; 8 — турбина; 9 — смеситель; 10 — сопло; черные кружки с “рукоятками” — места возможного регулирования элементов двигателя.

Рис. 2. Сравнение дроссельных характеристик двигателя изменяемого рабочего процесса, турбореактивного двухконтурного двигателя с форсажной камерой и турбореактивного двигателя с форсажной камерой на дозвуковых (а) и сверхзвуковых (б) режимах полёта (Cуд — удельный расход топлива, P — тяга): 1 — турбореактивный двигатель (турбореактивный двигатель с форсажной камерой); 2 — двигатель изменяемого рабочего процесса (то же с форсажем); 3 — турбореактивный двухконтурный двигатель (турбореактивный двухконтурный двигатель с форсажной камерой); 4 — турбореактивный двухконтурный двигатель с форсажной камерой; 5 — двигатель изменяемого рабочего процесса с форсажом; 6 — турбореактивный двигатель с форсажной камерой.

двигатель критический многодвигательного самолёта — один из двигателей, отказ которого вызывает наиболее неблагоприятные изменения в поведении самолёта или в условиях его пилотирования. Отказ Д. к. в ожидаемых условиях эксплуатации не должен приводить к опасной ситуации. При выборе тяговооружённости (энерговооружённости) многодвигательного самолёта отказ Д. к. является расчётным случаем — работающие двигатели самолёта с отказавшим Д. к. должны обеспечивать тягу, достаточную для продолжения взлёта (см. Продолженный взлёт) или ухода на второй круг, при заходе на посадку.

движитель — устройство, с помощью которого авиационные двигатели (поршневые, газотурбинные) создают тягу, необходимую для движения летательного аппарата. Все Д. авиационного типа работают по воздушно-реактивному принципу, то есть создают тягу путём отбрасывания воздуха со скоростью, которая больше скорости набегающего потока. К Д. относятся несущие винты, вертолётов и воздушные винты самолётов. К Д. может быть отнесён вентилятор наружный контура турбореактивного двухконтурного двигателя с раздельными контурами. Существует закономерность (см. рис.), согласно которой чем больше диаметр винта Dв при той же передаваемой ему мощности Nв (то есть чем меньше коэффициент мощности винта Nв/D2в), тем больше удельная тяга винта Pв/Nв.

В. А. Сосунов.

Зависимость удельной тяги движителя Pв/Nв в стартовых условия); от его относительного диаметра {{D}}в(Nв = idem) или коэффициента мощности: 1 — открытые винты (а — винты вертолётов, б — винты турбовентиляторного двигателя, в — винтовентиляторы); 2 — вентиляторы наружного контура турбореактивного двухконтурного двигателя (степень двухконтурности 5—15).

двойной восходящий разворот — см. в статье Разворот.

двухбалочный самолет — самолёт, хвостовое оперение которого (преимущественно двухкилевое) вынесено на балках, закреплённых на крыле. В передней части балок могут быть установлены двигатели, а в крыльевой части балок — стойки шасси. Экипаж и целевая нагрузка располагаются в объёме крыла или в гондоле, установленной на крыле (в отличие от двухфюзеляжного самолёта, у которого они размещаются в фюзеляжах). Преимущества Д. с.: улучшенный обзор, удобство погрузки и разгрузки, иногда снижение аэродинамического сопротивления.

Первый Д. с. “Пороховщиков №2” (рис. в таблице V) был построен в 1914 А. А. Пороховщиковым. Д. с. создавались К. А. Калининым (К-7, см. рис. в таблице XII), О. К. Антоновым (ОКА-33). В период Второй мировой войны применялись Д. с. — истребители Локхид P-38L (рис. в табл, XX) и Нортроп P-61 (оба США), разведчик Фокке-Вудьф Fw-189 (Германия; рис. в таблице XXI). Серийные реактивные Д. с.: Де Хэвилленд “Вампир” (рис. в табл. XXX). “Веном”, “Сивиксен” (Великобритания). Грузовые Д. с.: Фэрчайлд С-119 (США, рис. в таблице XXX), Норд авиасьон “Норатлас” (Франция), Армстронг Унтуорт “Аргоси” (Великобритания). По схеме Д. с. построен отечественный самолёт М-17, установивший в конце 80-х гг. ряд мировых рекордов высоты.

двухконтурный турбореактивный двигатель — см. Турбореактивный двухконтурный двигатель.

де Хэвилленд(de Havilland) Джефри (1882—1965) —английский авиаконструктор, пилот и промышленник, один из пионеров авиации. Окончил Оксфордский университет и высшую инженерную школу. Оставил работу на автомобилестроительной фирме для постройки самолёта собственной конструкции, разбившегося в первом полёте в 1909. Следующий свой самолёт (1910) Де X. пилотировал сам. С 1910 работал на аэростатном (позже авиационном) заводе конструктором и лётчиком-испытателем, где построил и испытал ряд самолётов, а с 1914 — главным конструктором на фирме “Эркрафт меньюфекчуринг”, где создал ряд истребителей и бомбардировщиков, в том числе широко применявшиеся в Первой мировой войне D.H.2 (1915), D.H.4 (1916, смотри рис. в табл. VIII) и D.H.9 (1917). Многие модифицированные военные самолёты Де X. того времени использовались после войны на гражданских авиалиниях. В 1920 основал авиа- и моторостроительную фирму “Де Хэвилленд”, где под его руководством в 20—30-х гг. был создан ряд лёгких гражданских самолётов, боевой самолёт “Москито”, применявшийся во Второй мировой войне, а в 40-х гг. и последующий период — ряд реактивных истребителей и пассажирских самолётов, в том числе первый реактивный пассажирский самолёт “Комета”. Награждён медалью Гуггенхеймов (1952).

Дж. Де Хэвилленд.

“Де Хэвилленд” (De Havilland Aircraft Со.) — самолёто- и авиадвигателестроительная фирма Великобритании. Основана в 1920 Де Хэвиллендом. В 1960 вошла в состав концерна “Хокер Сидли”. В 20—30-е гг. выпускала в основном спортивные, туристские, учебно-тренировочные и лёгкие пассажирские самолёты, в том числе известной серии “Мос”: D.H.60 “Мос” (первый полёт в 1925), D.H.61 “Джайант мос” (1927), D.H.80 “Пусс мос” (1929, смотри рис. в табл. XIV), D.H.82 “Тайгер мос” (1931), D.H.87 “Хорнет мос” (1934) и др. В 1937 был создан скоростной пассажирский самолёт D.H.91 “Альбатрос” с четырьмя поршневыми двигателями. В годы Второй мировой войны построен 7781 самолёт деревянной конструкции D.H.98 “Москито” (1940, широко применялись в качестве лёгких бомбардировщиков, истребителей и разведчиков, см. рис. в табл. XIX), Большими сериями выпускались реактивные истребители D.H.100 “Вампир” (1943, см. рис. в табл. XXX), D.H.112 “Веном” (1949), в 1951 создан палубный истребитель D.H.110 “Си виксен” с двумя турбореактивными двигателями. В 1946 создан экспериментальный реактивный самолёт D.H.108 схемы “бесхвостка” со стреловидным крылом. В 1945 выпущен пассажирский самолёт D.H.104 “Дав” с двумя поршневыми двигателями, а затем первый реактивный пассажирский самолёт D.H.106 “Комета” (1949. см. рис. в табл. XXX). Самолёт “Комета” 1 вышел на авиалинии в 1952, но в 1954 снят с эксплуатации из-за ряда катастроф. В конце 50-х гг. выпускались усовершенствованные варианты; всего построено 112 самолётов “Комета”, Были также созданы пассажирский самолёт D.H.121 “Трайдент” (1962) с тремя турбореактивными двухконтурными двигателями и реактивный административный самолёт D.H.125 (1962), выпуск которых был продолжен концерном “Хокер Сидли”. Основные данные некоторых самолётов фирмы приведены в табл. 1 и 2.

Ю. Я. Шилов.

Табл. 1 — Реактивные пассажирские самолёты “Комета” фирмы “Де Хэвилленд”

Основные данные

"Комета” 1

“Комета” 4C

Первый полёт, год

1949

1959

Число и тип двигателей

4 ТРД

4 ТРД

Тяга двигателя, кН.

19,8

46,7

Длина самолета, м

28,35

35,67

Высота самолета, м

8,65

8,99

Размах крыла, м

35

35

Площадь крыла, м2

187,2

197

Максимальная взлётная масса, т

47,627

73,5

Масса снаряжённого самолёта, т

-

36,1

Максимальное число пассажиров

48

101

Максимальная коммерческая нагрузка, т

5,67

10,4

Дальность полёта с максимальной коммерческой нагрузкой, км

2816

5350

Коммерческая нагрузка при максимальном запасе топлива, т

-

5,1

Дальность полёта при максимальном запасе топлива, км

-

6700

Максимальная крейсерская скорость полёта, км/ч

788

872

Экипаж, чел.

4

4

 Де Хэвилленд оф Канада” (De Наvilland Aircraft of Canada Ltd. DHC) — самолётостроительная фирма Канады. Основана в 1928 как филиал фирмы “Де Хэвилленд”, в 1960 вошла в состав концерна “Хокер Сидли”, с 1974 государственная фирма. В 1986 стала отделением канадского филиала фирмы “Боинг”. До конца Второй мировой войны выпускала самолёты основной фирмы (в том числе построила 1134 самолёта D.H.98 “Москито”). затем перешла на разработку и производство собственных моделей. После тренировочного самолёта DHC-1 “Чипманк” (первый полёт в 1946) был создан ряд лёгких транспортных самолётов короткого взлёта и посадки гражданских и военных вариантов: с поршневым двигателем — DHC-2 “Бивер” (1947), DHC-3 “Оттер” (1951), DHC-4 “Карибу” (1958); с турбо винтовым двигателем — ОНС-2 “Турбо бивер” (1963), DHC-5 “Баффало” (1964) и DHC-6 “Туин оттер” (1965). Для коротких авиалиний созданы малошумные пассажирские самолёты короткого взлёта и посадки “Дэш”7 (1975, см. рис. в табл. XXXVII) и “Дэш”8 (1983, см. рис.). К концу 1986 число выпущенных самолётов достигло 7000, из них 3791 — собственно разработки. Основные данные некоторых самолётов фирмы приведены в табл. В 1991 фирма закуплена консорциумом “АТР”.

Ю. Я. Шилов.

Пассажирский самолёт “Дэш”8-300.

девиация (позднелатинское deviatio, от латинского devio — уклоняюсь с дороги) — 1) Д. Авиационной конструкции — в расчётах на прочность при моделировании авиационных конструкции, например, крыла, балкой Д. называется угол поворота поперечного сечения балки при её изгибе.

2) Д. магнитная — разность между истинным магнитным курсом летательного аппарата и магнитным курсом, измеренным бортовым устройством (например, магнитным компасом); обусловлена собственным магнитным полем летательного аппарата. В зависимости от того, какие материалы — магнитно-твердые или магнитно-мягкие — определяют собственное магнитное поле летательного аппарата, Д. ведёт себя по-разному при развороте летательного аппарат по курсу на 360°. Если магнитное поле обусловлено магнитно-твёрдыми материалами (их намагниченность может измениться только под действием сильных магнитных полей), то при развороте летательного аппарата на 360Х{{°}} Д. дважды меняет знак и называется полукруговой. Если же основное влияние оказывают магнитно-мягкие материалы (их намагниченность может меняться под действием слабых магнитных полей, в том числе магнитного поля Земли), то при развороте на 360{{°}} Д. изменит знак четырежды и называется четвертной. Д. вызывает погрешность в измерении магнитного курса летательного аппарата, и её необходимо учитывать при решении навигационных задач.

деградация стабилизатора — устаревшее название угла установки стабилизатора относительно плоскости хорд крыла.

Дейнекин Пётр Степанович (р. 1937) — советский военачальник, генерал-полковник авиации (1990), заслуженный военный лётчик СССР (1984). Окончил Балашовское военно-авиационное училище лётчиков (1957), Военно-воздушную академию имени Ю. А. Гагарина (1969), Военную академию Генштаба Вооруженных Сил СССР (1982). Службу проходил в авиационных частях и соединениях Дальней авиации. С 1985 командующий авиационным объединением, в 1988—1990 командующий Дальней авиацией, с 1990 1-й заместитель главнокомандующего Военно-воздушных сил, с 1991 главнокомандующий Военно-воздушных сил — заместитель министра обороны СССР. Награждён орденами “За службу Родине в Вооруженных Силах СССР” 2-й и 3-й степени, медалями.

П. С. Дейнекин.

декомпрессия (от латинского de- — приставка, означающая удаление, движение вниз и compressio — сжатие, сдавливание) — уменьшение давления окружающей среды (при подъёме на высоту, всплытии с глубин, разгерметизации кабины летательного аппарата и т. п.). Д. характеризуется разностью между начальным и конечным давлением, продолжительностью, скоростью изменения давления и кратностью (отношением начального давления к конечному). Изменение давления в высотных полётах может стать при определенном состоянии организма причиной высотных декомпрессионных расстройств (ВДР), в частности декомпрессионной высотной болезни. При выравнивании давления в газосодержащих полостях тела с изменяющимся внешним давлением возможны расстройства, характеризующиеся нарушением или ослаблением различных функций организма, наблюдающиеся даже на сравнительно небольшой высоте. Значительное резкое снижение давления в течение менее 1 с, так называемая взрывная Д., сопровождающаяся хлопком, как при взрыве, и чаще всего связанная с мгновенной разгерметизацией кабины летательного аппарата, вызывает не только неприятные ощущения в кишечнике, заложенность в ушах, носовых пазухах, но и боли в суставах и мышцах. Снижение давления при подъёме на 7 км и более может вызвать образование в крови и тканях газовых пузырьков, которые могут обусловить возникновение газовой эмболии (декомпрессионной болезни). На высоте 19,2 км при снижении давления до давления насыщенных паров (66,5 кПа при нормальной температуре тела) возможно закипание жидкостей организма, образование парогазовых пузырьков в крови, лимфе и межтканевой жидкости, в результате чего развивается высотная парогазовая эмфизема (см. Эмфизема высотная). Надёжную защиту от ВДР обеспечивают гермокабины летательных аппаратов и высотное снаряжение.

Лит.: Основы космической биологии и медицины, т. 1—3, М. 1975.

И. Н. Черняков.

Дексбах Михаил Сергеевич (р. 1937) — советский лётчик-испытатель, заслуженный лётчик-испытатель СССР (1980), Герой Советского Союза (1981). Окончил Армавирское военно- авиационное училище лётчиков (1956). До 1966 служил в Военно-воздушных силах. С 1967 (после окончания Школы лётчиков-испытателей) в ОКБ А. С. Яковлева. Освоил многие типы опытных и серийных самолётов Як, участвовал в испытаниях самолётов Як-28, Як-40, Як-18Т и др. Провёл заводские и государственные испытания первого в СССР самолёта вертикального взлёта и посадки (СВВП), первым произвёл посадку СВВП на корабль и полёты с корабля; провёл большую методическую работу, способствовавшую освоению СВВП лётчиками авиации военно-морского флота. Награждён орденами Ленина, Октябрьской Революции, Красной Звезды, медалями. Портрет смотри на стр. 204.

М. С. Дексбах.

“Дельта Эр Лайнс”. (Delta Air Lines) — авиакомпания США. Осуществляет перевозки в страны Европы, Азии, Северной и Южной Америки. Основана в 1924. В 1989 перевезла 68,2 миллионов пассажиров, пассажирооборот 95,5 миллиарда пассажиро-км. Авиационный парк — 407 самолётов.

дельтавидное крыло (по начертанию греческой буквы {{Δ}}) — см. в статье Крыло.

дельтаплан — планёр с балансирным управлением и гибким крылом, имеющим в плане вид буквы {{∆}}. Состоит (рис. 1) из каркаса, выполненного из труб диаметр 30—45 мм, на который натянута герметичная ткань (лавсан, дакрон). Ткань может быть подкреплена “латами” для придания ей соответствующего профиля. Поверхность крыла в полёте имеет вид двух конический поверхностей, совмещённых у вершины. В точке пересечения килевой и поперечной балок крепится подвесная система пилота, обеспечивающая его расположение сидя или лёжа. Подвесная система обеспечивает свободное перемещение пилота относительно трапеции, выполняющей роль ручки управления.

Идея создания балансирного планёра и её реализация принадлежат О. Лилиенталю.

Параметры его сборно-разборного планёра, созданного в 1891, а также его складывающаяся конструкция соответствуют современным, (масса 20 кг, размах крыла 6,7 м, площадь 13 м2). Балансирные планеры того времени и последующие имели недостаточную управляемость и были сложными в приобретении навыков пилотирования, так как пилот держался в вырезе крыла на локтях к предплечьях. Полёты на воздушных змеях (которые можно считать разновидностью Д.), буксируемых повозкой или судном, известны с начала XX в. В 1962 австралийские воднолыжники стали применять их для буксировки за канатом. Змеи имели различные формы: многоугольные, коробчатые, в виде звезды и т. п. Но наилучшей оказалась конструкция, запатентованная Ф. Рогалло (1951, США). Гибридное крыло Рогалло имело трапецию, обладало хорошей устойчивостью и довольно высоким для змеев аэродинамическим качеством (3,5—4).

Крыло современного Д. (рис. 2) имеет значительное удлинение оптимальный аэродинамический профиль и аэродинамическое качество Д. достигает 12—14, масса конструкции 7—40 кг, нагрузка на крыло 5—6 кг/м2, диапазон скоростей полёта 25—90 км/ч. Получили распространение мотодельтапланы, оснащённые небольшим двигателем (10—15 кВт) для автономного взлёта и набора высоты (рис. 3). На Киевском механическом заводе имени О. К. Антонова создан Д. “Славутич-УТ” (рис. 4) который принят к серийному производству.

Лит.: Вейгелин К. Е., Очерки по истории летного дела, кн. 1, М., 1940; Жеглов В. А., Рыбкин В. Б., Мацепуро О. В., Учись летать на дельтаплане, М,. 1960; Козьмин В. В., Кротов И. В., Дельтапланы, 2 изд., М., 1989.

А. А. Бадягин, Ю. В. Макаров.

Рис. 1. Конструкция дельтаплана: 1 — гибкая поверхность крыла (купол); 2 — центральный узел; 3 — верхние растяжки; 4 — мачта; 5 — килевая труба (балка); 6 — носовой узел; 7 — боковая труба (балка); 8 — поперечная труба (балка); 9 — нижние растяжки; 10 — рулевая трапеция; 11 — подвесная система; 12 — даты.

Рис. 2. Формы крыла дельтаплана: а — учебного; б — учебно-тренировочного; в — спортивного.

Рис. 3. Мотодельтаплан.

Рис. 4. Дельтаплан “Славутич-УТ”.

дельтапланёрный спорт — один из массовых видов авиационного спорта, включающий полёты на сверхлёгких планерах, в первую очередь дельтапланах, и соревнования на продолжительность, дальность и среднюю скорость полёта по маршрутам различной конфигурации, выигрыш высоты (разница между низшей и высшей точками полёта) и точность приземления. Места соревнований дельтапланеристов традиционно связаны с горами, холмами, которые позволяют осуществлять взлёт с ног и первоначальный набор высоты в динамическом потоке обтекания. Однако Д. с. уверенно выходит и на равнину, чему способствует развитие средств механизированного запуска дельтапланов: специальных лебёдок, оснащённых вспомогательными двигателями для взлёта и набора высоты, дельталётов-буксировщиков и т. д.

Зарождение Д. с. в СССР относится к началу 1970-х гг., официальное признание он получил в 1976, когда состоялся 1-й Всесоюзный слёт энтузиастов-дельтапланеристов. В 1978 была образована федерация Д. с. СССР, которая в 1988 преобразована в Объединенную федерацию сверхлёгкой авиации СССР. В середине 80-х гг. в СССР функционировало свыше 700 обществ дельтаклубов при первичных организациях ДОСААФ, предприятий и учреждений, объединявших более 10 тысяч спортсменов. Ежегодно ими выполнялось около 400 тысяч полётов. В 1986 образован Центральный дельтаклуб, основными задачами которого являлись обучение пилотов-инструкторов, спортсменов высшего разряда, подготовка сборной команды страны. Дельтаклубы организуют лётную работу в соответствии с нормами воздушного права, их члены получают необходимую теоретическую наземную подготовку, занимаются самодеятельным техническим творчеством, участвуют в соревнованиях.

Массовые соревнования клубных, областных, республиканских команд стали проводиться в конце 70-х гг. С 1981 проводились чемпионаты страны по Д. с. На 1-м чемпионате СССР звание абсолютного чемпиона завоевал А. Кареткин. Развивался женский Д. с. Первые абсолютные чемпионки страны — Е. Дробышева (1989), О. Опарина (1990). На международных соревнованиях советские спортсмены впервые выступили в 1986. Первый советский мировой рекордсмен — А. Коркач (в 1987 он прошёл 25-км треугольный маршрут со средней путевой скоростью 25,56 км/ч).

В 1986 в СССР начали осваивать полёты на моторных дельтапланах, появилась разновидность Д. с. — дельталётный спорт. Проведены первые всесоюзные соревнования по дельталётному спорту (1988), абсолютным чемпионом стал В. Евтушенко. Разновидностью Д. с. являются также соревнования спортсменов, летающих на парапланах — дельтапланах с нежёстким (парашютным) крылом. За рубежом Д. с. наиболее развит в Австралии, ФРГ, США, Франции, Венгрии, Польше. С 1977 проводятся чемпионаты мира, Европы (1 раз в 2 года), международные встречи. Советские спортсмены впервые участвовали на чемпионате Европы в 1986, на чемпионате мира в 1988. Из 29 рекордов мира, зарегистрированных Международной авиационной федерацией (по состоянию на 1 января 1991), 12 принадлежит США, остальные — другим странам. Перспективы развития Д. с. связаны с олимпийским движением. В 1985 Д. с. получил признание Международного олимпийского комитета. См. статью Рекорды авиационные.

В. И. Забава, Е. Н. Елизаров.

Дементьев Пётр Васильевич (1907—1977) — советский государственный деятель, генерал-полковник-инженер (1976), дважды Герой Социалистического Труда (1941, 1977). После окончания Военно-воздушной академии Рабоче-крестьянской Красной Армии имени профессора Н. Е. Жуковского (1931; ныне Военно-воздушная инженерная академия имени профессора Н. Е. Жуковского) работал в авиационной промышленности. В 1934—1937 директор авиационного завода в Тушине, в 1938—1941 главный инженер, а затем директор авиационного завода №1 в Москве. В 1941—1953 1-й заместитель наркома, 1-й заместитель министра авиационной промышленности. В 1953—1957 министр авиационной промышленности СССР. В 1957-1965 председатель Государственного комитета по авиационной технике — министр СССР. В 1965—1977 министр авиационной промышленности СССР. В годы Великой Отечественной войны участвовал в организации массового производства боевых самолётов для фронта. Внёс большой вклад в развитие авиационной промышленности СССР. Депутат Верховного Совета СССР с 1954. Государственная премия СССР (1953). Награждён 9 орденами Ленина, орденами Красного Знамени, Суворова 2-й степени, Кутузова 1-й степени, 2 орденами Трудового Красного Знамени, орденом Красной Звезды, медалями. Бронзовый бюст в Казани. Имя Д. присвоено Московскому авиационному производственному объединению.

П. В. Дементьев.

Дёмин Сергей Владимирович (1906—1938) — советский воздухоплаватель. Учился в МВТУ и МАИ. В 1930 (будучи студентом МАИ) был одним из организаторов и участником постройки дирижабля “Комсомольская правда”. Окончил Дирижаблестроительный институт (1934). В 1932 командир дирижаблей B-l, B-4, затем помощник командира дирижабля В-6. Разработал ряд систем, облегчающих ввод и вывод дирижаблей из эллинга, автоматический причал для посадки дирижабля без стартовой команды, системы подъёма на дирижабль и спуска с него в воздухе. Участвовал (совместно с И. В. Паньковым) в рекордном полёте дирижабля В-6 (1-й помощник командира) продолжительностью 130 ч 27 мин (1937). Погиб при выполнении полёта на дирижабле В-6 для снятия со льдины группы И. Д. Папанина.

С. В. Дёмин.

Дёмина Вера Фёдоровна (1911—1984) — первая в СССР и в мире женщина — командир дирижабля, активная участница полётов на свободных аэростатах. Курсантом воздухоплавательной школы Мосавиахима в 1929 участвовала в ремонте дирижабля “Московский химик-резинщик”, а в 1930—1931 в строительстве дирижабля “Комсомольская правда”. По окончании воздухоплавательной школы Осоавиахима (1932) — штурман, а с 1933 — командир дирижабля “СССР В-1”. В 1937—1940 — командир дирижабля “СССР B-1” женским экипажем. Во время Великой Отечественной войны — пилот аэростата наблюдения 18-го отдельного воздухоплавательного отряда Западного фронта, проводила воздушную разведку и корректировку огня фронтовой артиллерии.

Лит.: В тылу и на фронте, М., 1984.

В. Ф. Демина.

демпфер (немецкое D{{ä}}mpfer — глушитель, от d{{ä}}mpfen — заглушать) свободных колебаний летательного аппарата —автоматическое устройство для демпфирования короткопериодических колебаний летательного аппарата путём соответствующего отклонения органов управления. Увеличение скорости и высоты полёта привели к значительному ухудшению собственно динамической устойчивости летательного аппарата. Некоторое улучшение динамической устойчивости летательного аппарата, которое можно обеспечить за счет выбора аэродинамической схемы (см. Аэродинамическое демпфирование), особенно на больших скоростях и высотах полёта, оказывается недостаточным, и задача улучшения, динамической устойчивости летательного аппарата на всех режимах полёта на практике решается с использованием Д. Обычно в состав Д. входят двухстепенной гироскоп (см. рис,), вырабатывающий сигнал, пропорциональный угловой скорости {{ω}} вращения летательного аппарат относительно некоторой (например, продольной) его оси, усилитель электрических сигналов, фильтр, выделяющий полезный сигнал, и рулевая машинка (см. Сервопривод). Выработанный Д. сигнал подаётся на рулевой привод, который отклоняет соответствующий орган управления на угол, значение которого пропорционально {{ω}}, препятствуя тем самым развитию колебаний. При этом различают Д. тангажа, рыскания и крена. Однако использование Д. наряду с улучшением устойчивости приводит и к некоторому изменению характеристик управляемости, особенно на малых скоростях полёта, что вызывает необходимость дополнительного отклонения лётчиком рычагов управления при полёте с постоянными угловыми скоростями (например, при вираже). Для исключения отмеченной особенности сигналы угловых скоростей, поступающих в Д., пропускают через автоматическое устройство (фильтр) с целью исключения постоянной составляющей. Простейший приём исключения этой составляющей — вычитание из измеренного сигнала соответствующей угловой скорости её расчётного значения. Например, при вираже в горизонтальной плоскости в Д. рыскания можно использовать сигнал {{Δω}}уд = {{ω}}у + (g/V)tg{{υ}}cos{{γ}}, где {{Δω}}уд — сигнал на Д. рыскания, {{ω}}у — измеренный сигнал угловой скорости рыскания, (g/V)tg{{υ}}cos{{γ}} — составляющая угловой скорости рыскания при вираже, {{υ}} — угол тангажа, {{γ}} — угол крена, g — ускорение свободного падения, V — скорость летательного аппарата. В случае, если манёвры совершаются с перегрузкой, существенно большей единицы, на практике для снятия постоянной составляющей в сигнале угловой скорости используют фильтры с передаточной функцией вида W = Тр(Тр + l). Введение такого фильтра ослабляет влияние Д. на характеристики управляемости, однако несколько ухудшает характеристики устойчивости. См. также Система улучшения устойчивости и управляемости.

Лит.: Бюшгенс Г. С., Студнев Р. В., Аэродинамика самолета, Динамика продольного и бокового движения, М., 1979.

В. И. Кобзев.

Структурная схема включения демпфера в систему управления самолетом: 1 — ручка управления; 2 — суммирующее устройство; РП — рулевой привод; Г — гироскоп; У — усилитель; Ф — фильтр: РМ — рулевая машинка.

демпфирование колебаний летательного аппарата — уменьшение амплитуды колебаний летательного аппарата. Различают естественное Д., обеспечиваемое только аэродинамическими силами и моментами при неподвижных органах управления, и искусственное Д., обеспечиваемое соответствующими отклонениями органов управления. Первое, например, происходит под действием аэродинамических моментов, обусловленных вращением летательного аппарата, пропорциональных угловой скорости вращения и направленных в сторону, противоположную вращению (см. статью Аэродинамическая схема, Аэродинамическое демпфирование). Значительную роль в обеспечении Д. продольного движения могут играть вертикальные перемещения летательного аппарата при колебаниях угла атаки. Основной вклад в Д. продольных колебаний вносит горизонтальное оперение, поперечных — крыло, путевых — вертикальное оперение. Естественное Д. с ростом высоты и Маха числа полёта заметно уменьшается. Для повышения Д. летательного аппарата используются автоматические устройства, наиболее простыми из которых являются демпферы колебаний.

Денисов Сергей Прокофьевич (1909—1971) — советский лётчик, генерал-лейтенант авиации (1940), дважды Герой Советского Союза (1937, 1940). В Советской Армии с 1929. Окончил военную школу пилотов (1931), курсы усовершенствования комсостава при Академии Генштаба (1939). Участник войны в Испании, боёв в районе р. Халхин-Гол, советско-финляндской и Великой Отечественной войн. В 1941—1943 начальник Качкиской военной авиационной школы лётчиков, в 1943—1944 командир истребительной авиадивизии, в 1944—1947 в Главном штабе Военно-воздушных сил, с 1947 в отставке по болезни. Депутат Верховного Совета СССР в 1937—1946. Награждён орденом Ленина, 2 орденами Красного Знамени, орденом Александра Невского, медалями. Бронзовый бюст на хуторе Постоялый Ольховатского района Воронежской области.

Лит.: Гринько А. И.,Улаев Г. Ф., Богатыри земли Воронежской, Воронеж, 1965.

С. П. Денисов.

день авиации и космонавтики. Всемирный день авиации и космонавтики, — отмечается 12 апреля согласно протоколу (п. 17) 61-й Генеральной конференции Международной авиационной федерации, состоявшейся в ноябре 1968, и решению Совета Международной авиационной федерации, принятому тридцатого апреля 1969 по представлению Федерации авиационного спорта СССР. Дата Д. а. и к. совпадает с датой Дня космонавтики, установленного Указом Президиума Верховного Совета СССР от 9 апреля 1962 в честь первого в мире полёта человека в космос, совершённого Ю. А. Гагариным на космическом корабле “Восток” 12 апреля 1961.

день воздушного флота, День авиации, — установлен постановлением Совета Народных Комиссаров СССР от 28 апреля 1933 в честь выдающихся достижении учёных, авиаконструкторов, лётного и технического состава Военно-воздушных сил в деле укрепления обороноспособности Советского государства. Дата празднования — третье воскресенье августа.

держатели бомбардировочного вооружения (ДБВ) — комплекс устройств и агрегатов, установленных на летательном аппарате и предназначенных для загрузки, удержания при транспортировке, подготовки к отделению и отделения подвешиваемых изделий в соответствии с их назначением. К ним относятся авиационные бомбы, зажигательные баки, блоки неуправляемых авиационных ракет, авиационные контейнеры с различным снаряжением, пусковые устройства для управляемых и неуправляемых ракет, установки пулемётно-пушечного вооружения, авиационные мины и торпеды, топливные баки. ДБВ классифицируются по месту расположения на летательном аппарате (наружная и внутренняя подвеска), по конструктивной схеме (кассетные и балочные, см. рис.), количеству подвешиваемых изделий (одно- и многопозиционные) и грузоподъёмности (различные весовые группы). Основу конструкций балочных держателей (как одно-, так и многопозиционных) составляет силовая балка. Кассетные держатели (многопозиционные) выполняются в виде силовой рамы и применяются главным образом при внутреннем размещении подвешиваемых изделий на летательном аппарате. От балочных держателей изделия отделяются либо свободно под действием веса и аэродинамических сил, либо принудительно с использованием специальных приводов, работающих на горячем газе, Принудительное отделение применяется при высоких скоростях полёта летательного аппарата, когда свободное отделение не обеспечивает безопасного (без соударения с летательным аппаратом и держателем) движения изделия. От кассетных держателей изделия отделяются только свободно.

Б. А. Черпаков.

Структурная схема держателей: а — балочного; б — кассетного; 1 — силовая балка или рама; 2 — замок; 3 — электро- или пиропривод; 4 — узлы крепления ДБВ к летательному аппарату; 5 — механизмы и устройства управления системами подвешивания изделий; 6 — устройства фиксации подвешиваемых изделий.

десантно-транспортное оборудование летательного аппарата — предназначается для загрузки, размещения и закрепления в летательном аппарате перевозимых грузов и личного состава, а также для их выгрузки или сбрасывания на парашютах.

К транспортному относятся верхнее (рис. 1) или (и) нижнее (рис. 2) погрузочное оборудование, а также грузовые трапы, защитные настилы пола, упорные колодки, распределители нагрузки и швартовочное оборудование. По грузовым трапам производится загрузка колёсной и гусеничной техники, они выполняются как отдельные съёмные элементы или как отклоняемая часть конструкции грузового люка (см. Рампа). Защитные настилы предназначены для исключения пробуксовки в процессе загрузки самоходной колёсной и гусеничной техники и исключения повреждения грузового пола. Выполняются в виде укладываемых на грузовой пол дорожек. Упорные колодки используются для страховки колёсной техники в процессе её загрузки (выгрузки), распределители нагрузки — для рассредоточения нагрузок на пол от опор перевозимой техники, Швартовочное оборудование (рис. 3) обеспечивает закрепление в кабине перевозимых грузов.

К десантному оборудованию относятся: транспортёры и роликовые конвейеры, обеспечивающие размещение и направленное движение вдоль грузовой кабины сбрасываемых грузов; устройства подвески вытяжных парашютных систем; сиденья; устройства принудительного введения в действие парашютных систем; механизмы уборки вытяжных звеньев парашютов; ограждения и створки.

Транспортёры в основном используются для сброса грузов в укупорке. Грузы располагаются группами (рис. 4) и перемещаются к проёму грузового люка вместе с магистралями транспортёра приводом. При сбросе техники и грузов, размещённых на парашютных платформах (рис. 5), последние вместе с магистралями транспортёра приводятся в движение вытяжными парашютными системами. Эти системы вводятся в действие по команде экипажа путём сброса с устройства подвески в воздушный поток за самолётом через проём открытого грузового люка. С платформой вытяжная система соединяется тросом. После отделения груза или платформы от самолёта парашютные системы, на которых они снижаются, вводятся в действие вытяжными звеньями, соединёнными с устройствами принудительного введения в действие парашютных систем. Роликовые конвейеры более просты по конструкции и в эксплуатации, чем транспортёры, но сбрасываемые грузы должны быть обязательно размещены на платформах, которые приводятся в движение вытяжной системой.

Сиденья предназначаются для размещения личного состава. В зависимости от расположения в грузовой кабине летательного аппарата различают бортовые и центральные сиденья. Они бывают одно- и многоместными.

Устройства для принудит, введения в действие парашютных систем парашютистов выполняются в виде расположенных вдоль грузовой кабины тросов или труб, по которым перемещаются поводки с кольцами. К кольцам или непосредственно к тросам крепятся карабины вытяжных звеньев парашютов. Ограждения и створки предназначены для организации и регулирования направленного движения парашютистов при их перемещении по грузовой кабине к проёмам, через которые производится сброс, а также для защиты парашютистов от повреждения движущимся вблизи грузом или воздушными потоками, возникающими при открывании грузовых люков и дверей.

В. И. Богайчук.

Рис. 1. Верхнее погрузочное оборудование; 1 — грузовая балка; 2 — электротельферы; 3 — пульты управления; 4 — универсальные стропы.

Рис. 2. Нижнее погрузочное оборудование: 1 — коробка управления; 2 — пульт управления; 3 — двурогий крюк; 4 — погрузочный блок с крюком; 5 — электролебёдка.

Рис. 3. Швартовочное оборудование: 1 — швартовочная цепь; 2 — швартовочный трос; 3 — двойкой швартовочный узел; 4 — швартовочный ремень; 5 — стяжное устройство; 6 — одинарный швартовочный узел; 7 — швартовочная сеть.

Рис. 4. Транспортёр с грузами: 1 — магистраль транспортера; 2 — привод транспортёра; 3 — механизм уборки швартовочных лямок; 4 — грузы в укупорке; 5 — вытяжное звено парашюта; 6 — швартовочная лямка; 7 — швартовочный замок; 8 — трос устройства принудительного введения в действие парашютных систем.

Рис. 5. Транспортёр с грузами на парашютные платформах: 1 — вытяжная парашютная система; 2 — соединительное звено; 3 — вытяжное звено парашюта; 4 — устройство принудительного введения в действие парашютных систем; 5 — магистраль транспортёра; 6 — парашютная платформа; 7 — груз.

десатурация (от латинского de- — приставка, означающая удаление, и saturatio — насыщение) — вдыхание чистого кислорода перед подъёмом человека на высоту с целью выведения из организма азота, который при резком снижении атмосферного давления может вызвать развитие высотной декомпрессионной болезни (см. Декомпрессия). Выведение азота из организма происходит неравномерно во времена. 1/3 всего растворенного в крови азота выводится в течение первых 10—15 минут затем происходит более медленное снижение содержания азота. Обычно Д. длится около 1 ч.

десинхроноз (от латинского de- — приставка, означающая удаление, и греческого s{{y}}nchronos — одновременный) — изменение различных физиологических и психических функций организма в результате нарушения суточных ритмов его функциональных систем. Причины Д.: рассогласование функциональных ритмов организма с показаниями внешних датчиков времени, например, при трансмеридиональных перелётах, перелётах на значительное расстояния в широтном направлении; устойчивое рассогласование по фазе ритма сон — бодрствование (работа в вечерние и ночные смены); частичное или полное отсутствие привычных приборов времени. Признаки Д.: плохой сон, ухудшение аппетита, раздражительность, снижение работоспособности, апатия, вялость. Продолжительность таких расстройств от 1 до 14 дней.

дестабилизатор — горизонтальное оперение, устанавливаемое перед крылом (см. рис.) и предназначаемое для обеспечения или улучшения продольной управляемости летательного аппарата. В отличие от стабилизатора Д. уменьшает запас продольной статической устойчивости (отсюда название; см. Степень устойчивости) . Обычно Д. применяется на сверхзвуковых летательных аппаратах схемы “утка” и, как правило, является органом управления продольным движением (иногда дополнительно к основным органам управления — элевонам). Д. может быть фиксированным или управляемым (используется как для балансировки, так и для управления летательным аппаратом). Управление летательным аппаратом осуществляется с большими скоростями перекладки (отклонения) Д. (10{{°}} в 1 с и более) от штурвала или ручки управления. На тяжёлых (неманёвренных) самолётах Д. обычно используется только для балансировки и называется балансировочным или триммируемым (см. Триммер). В этом случае Д. управляется от специальной кнопки и отклоняется с небольшими скоростями (0,2—0,5{{°}} в 1 с).

Д. увеличивает эффективность органов управления продольным движением, улучшает манёвренность летательного аппарата, продольную управляемость на больших углах атаки. Балансировка статически устойчивого летательного аппарата нормальной аэродинамической схемы осуществляется, как правило, при отрицательной подъёмной силе стабилизатора, что уменьшает общую подъёмную силу летательного аппарата. В схеме же с Д. создаваемая им балансировочная сила направлена вверх, то есть суммарная подъёмная сила может увеличиваться. Самолёты с Д. по сравнению с самолётами схемы “бесхвостка” могут иметь больший коэффициент подъёмной силы на режимах взлёта и посадки и, следовательно, лучшие взлётно-посадочные характеристики. В зависимости от типа летательного аппарата площадь Д. изменяется в широких пределах, доходя до 25% площади крыла.

А. Г. Обрубов.

дефектоскопия (от латинского defectus — изъян и греческого sbop{{éō}} — ńмотрю) авиационных конструкций — комплекс физических методов, позволяющих осуществить контроль качества материалов, полуфабрикатов, деталей и узлов авиационных конструкций без их разрушения. Методы Д. позволяют оценить качество каждой отдельной детали и осуществить сплошной (100%-й) контроль, что особенно важно для изделий авиационной техники, для которых методы выборочного контроля путём испытания (обычно с разрушением) части партии образцов деталей недостаточны, так как не позволяют судить о качестве каждой детали из этой партии.

Задачей Д. авиационных конструкций, наряду с обнаружением дефектов типа трещин и другие нарушений сплошности, является контроль размеров отдельных деталей (как правило. при одностороннем доступе), а также обнаружение негерметичности в заданных зонах. Д. авиационных конструкций — один из методов обеспечения безопасной эксплуатации летательного аппарата; объём и выбор вида Д. зависят от условий его эксплуатации (см. Эксплуатационная живучесть).

До конца 60-х гг. Д. авиационных конструкций использовалась главным образом в условиях производства с целью отбраковки заготовок и деталей, содержащих дефекты (главным образом металлургического происхождения). Развитие реактивной авиации, создание высокоресурсных скоростных летательных аппаратов большой грузоподъёмности значительно повысило требования к надёжности авиационных конструкций. Переход на техническое обслуживание и ремонт авиационной техники по состоянию привели к необходимости применения Д. также в процессе эксплуатации. Для этого уже на стадии проектирования предусматривается необходимая контролепригодность авиационных конструкций, позволяющая использовать методы Д. в лабораторных и цеховых условиях при изготовлении, а также в аэродромных условиях при техобслуживании летательных аппаратов для контроля деталей и узлов (без их разборки или с частичной разборкой) с максимальной надёжностью и достоверностью при минимальных затратах времени. В ряде случаев для повышения контролепригодности авиационных конструкций необходимо предусматривать специальные окна (лючки) или разъёмы, облегчающие доступ средств контроля к нужным участкам. В некоторых случаях для своевременного обнаружения развивающихся дефектов датчики дефектоскопов встраиваются непосредственно в авиационные конструкции.

Методы Д. основаны на использовании проникающих излучений (электромагнитных, акустических, радиоактивных), взаимодействия электрических и магнитных полей с материалами, а также явлений капиллярности, свето- и цветоконтрастности. В зонах расположения дефектов в материале вследствие изменения структурных физических характеристик материала изменяются условия его взаимодействия с указанными излучениями, физическими полями, а также с веществами, наносимыми на поверхность контролируемой детали или вводимыми в её полость. Регистрируя с помощью соответствующей аппаратуры эти изменения, можно судить о наличии дефектов, представляющих собой нарушение сплошности материала или однородности его состава и структуры, определить их координаты и оценить размеры. С достаточно высокой точностью возможно также измерение толщин стенок полых деталей и нанесённых на изделия защитных и другие покрытий.

В практике нашли применение следующие методы Д. авиационных конструкций.

Оптические методы — методы, осуществляемые визуально (для обнаружения поверхностных трещин и других дефектов размерами более 0,1—0,2 мм) или с помощью оптических приборов (эндоскопов), позволяющих обнаруживать аналогичные дефекты размерами более 30—50 мкм на внутренних поверхностях и в труднодоступных зонах. Оптические методы обычно предшествуют другим методам и используются для контроля всех деталей авиационных конструкций на всех стадиях изготовления и эксплуатации.

Радиационные методы, использующие рентгеновское, гамма- и другие (например, электроны) проникающие излучения различных энергий, получаемые с помощью рентгеновских аппаратов, радиоактивных изотопов и других источников, позволяют обнаруживать внутренние дефекты размерами более 1—10% от толщины просвечиваемого сечения в изделиях толщиной (по стали) до 100 (рентгеновская аппаратуры) — 500 мм (при использовании быстрых электронов). Радиационные методы используются для контроля литых, сварных и других деталей авиационных конструкций из металлических и неметаллических материалов, а также для контроля дефектов сборки различных узлов (рис. 1).

Радиоволновые методы основаны на изменении интенсивностей, сдвигов по времени или фазе и других параметров электромагнитных волн сантиметрового и миллиметрового диапазонов при распространении их в изделиях из диэлектрических материалов (резина, пластмассы и другие). На глубине 15—20 мм возможно обнаружение расслоений площадью более 1 см2.

Тепловые методы — методы, использующие инфракрасное (тепловое) излучение нагретой детали для обнаружения неоднородности её строения (несплошность в многослойных изделиях, в сварных и паяных соединениях). Чувствительность современной аппаратуры (тепловизоры) позволяет зарегистрировать разность температур на поверхности контролируемой детали менее 1{{°}}С.

Магнитные методы основаны на анализе магнитных полей рассеяния, возникающих а зонах расположения поверхностных и подповерхностных дефектов в намагниченных деталях из ферромагнитных материалов (рис. 2). В оптимальных условиях, при расположении дефекта перпендикулярно направлению намагничивающего поля, могут быть обнаружены достаточно тонкие дефекты, например, шлифовочные трещины (в стали) глубиной 25 и раскрытием 2 мкм. Магнитными методами можно также измерять с погрешностью, не превышающей 1—10 мкм, толщину защитных (немагнитных) покрытий, нанесённых на деталь из ферромагнитного материала.

Акустические (ультразвуковые) методы — методы, использующие упругие волны широкого диапазона частот (0,5—25 МГц), вводимые в контролируемую деталь под различными углами. Распространяясь в материале детали, упругие волны затухают в различной степени, а встречая дефекты, отражаются, преломляются и рассеиваются. Анализируя параметры (интенсивность, направление и другие) прошедших и (или) отражённых волн, можно судить о наличии поверхностных и внутренних дефектов различной ориентировки размерами более 0,5—2 мм2. Контроль может быть проведён при одностороннем доступе (рис. 3). Возможно также измерение с погрешностью не более 0,05 мм толщины полых изделий (ограничениями являются значительная кривизна поверхности детали и сильное затухание ультразвуковых волн в материале). Акустическими методами (на низких частотах) могут быть обнаружены расслоения площадью более 20—30 мм2 в клеёных и паяных конструкциях с металлическим и неметаллическим заполнителем (в том числе с сотовым), в слоистых пластиках, а также в плакированных листах и трубах. Используя так называем метод акустической эмиссии, можно обнаружить в нагруженных элементах авиационных конструкций развивающиеся (то есть наиболее опасные) трещины, выделив их из обнаруженных другими методами менее опасных, неразвивающихся дефектов. Зоны контроля при этом формируются с помощью различного расположения датчиков (рис. 4) на конструкции. Проволочные датчики устанавливаются в зоне контроля так, чтобы их направление не совпало с направлением развития усталостной трещины (рис. 5).

Вихретоковые (электроиндуктивные) методы основаны на взаимодействии полей вихревых токов, возбуждённых датчиком дефектоскопа в изделии из электропроводящего материала, с полем этого же датчика. Эти методы Д. позволяют выявлять нарушения сплошности (трещины протяжённостью более 1—2 мм и глубиной более 0,1—0,2 мм, плёны, неметаллические включения), измерять толщину защитных покрытий на металле, судить о неоднородностях химического состава и структуры материала, о внутренних напряжениях. Аппаратура для контроля вихретоковыми методами высокопроизводительна и позволяет автоматизировать разбраковку.

Электрические методы основаны на использовании главным образом слабых постоянных токов и электростатических полей; позволяют обнаруживать поверхностные и подповерхностные дефекты в изделиях из металлических и неметаллических материалов и различать некоторые марки сплавов между собой.

Капиллярные методы основаны на явлении капиллярности, то есть, на способности некоторых веществ проникать в мелкие трещины. Обработка такими веществами повышает цвето- и светоконтрастность участка изделия, содержащего поверхностные трещины, относительно окружающей этот участок неповреждённой поверхности. Эти методы позволяют обнаруживать поверхностные трещины раскрытием более 0,01 мм, глубиной от 0,03 и протяжённостью от 0,5 мм в деталях из непористых материалов, в том числе, в деталях сложной формы, когда применение другие методов затруднено или исключено.

Течеискания методы основаны на измерении давления внутри полой герметизированной детали или интенсивности вытекания жидкости либо газа через образовавшееся нарушение герметичности.

Методы Д. по отдельности не являются универсальными, поэтому наиболее ответственные детали обычно проверяют, используя несколько методов, хотя это и приводит к дополнительным затратам времени. Для повышения надежности результатов контроля и производительности труда внедряют автоматизированные комплексы, в том числе с использованием ЭВМ для управления контролем и обработки информации, получаемой с датчиков дефектоскопов.

Лит.: Приборы для не разрушающего контроля материалов и изделий. Справочник, под ред. В. В. Клюева, т, 1—2, М., 1976; Неразрушающий контроль металлов и изделий, под ред. Г.С. Самойловича, М., 1976.

Ю. П. Бородин, Д. С. Шрайбер.

Рис. 1. Объекты контроля при радиационном методе дефектоскопии: а — монолитный элемент; б — многослойный пакет из однородных материалов; в — многослойный пакет из разнородных материалов с различной плотностью.

Рис. 2. Зоны контроля при магнитном методе дефектоскопии: а — свободная поверхность; б — обшивка около потайной (выступающей) головки заклепки (болта); в — незаполненное отверстие; г — свободный пакет; д — пакет с заклепками (болтами).

Рис. 3. Зоны контроля при акустической (ультразвуковом) методе дефектоскопии: а — отверстие в ребре; б — сход ребра; в —отверстие под накладкой.

Рис. 4. Зоны контроля методом акустической эмиссии; Д1, Д2, Д3, Д4 — датчики.

Рис. 5. Размещение проволочного датчика в зоне контроля.

децибелов шкала — логарифмическая шкала, используемая в акустике для измерения звуковых давлений и интенсивности звука, которые в акустике авиационной меняются в весьма широких пределах (~ 108 раз). Согласно Д. ш., звуковые колебания измеряются в уровнях звукового давления L = 20lgP/P0, где P0 = 20 мкПа — пороговое давление, соответствующее порогу слышимости человека. Уровень звукового давления 60—70 дБ соответствует нормальной разговорной речи, 120 дБ вызывает болевое ощущение, 160 дБ наблюдается вблизи мощного работающего реактивного двигателя. В акустических измерениях применяется также уровень звуковой мощности источника, равный Lw = 10lgW/W0, где W0 = 1 пВт (10—12 Вт) — принятое значение звуковой мощности, соответствующее потоку звуковой энергии через площадку в 1 м2 при интенсивности звука I0 = 1 пВт/м2.

“Джал” (JAL, Japan Air Lines) — авиакомпания Японии, одна аз ведущих в мире. Осуществляет перевозки в страны Западной Европы, Азии, Южной Америки, а также в Россию, США, Канаду и Австралию. Основана в 1953. В 1989 перевезла 22 миллионов пассажиров, пассажирооборот 53,08 миллиардов пассажиро-км. Авиационный парк — 90 самолётов.

“Джапан Эр Системс” (Japan Air Systems Co. Ltd., JAS) — авиакомпания Японии. Осуществляет перевозки на внутренн авиалиниях, а также в некоторые страны Юго-Восточной Азии. Основана в 1971 под названием “Тоа доместик эрлайнс”. В 1939 перевезла 12,7 миллионов пассажиров, пассажирооборот 7,13 миллиарда пассажиро-км. Авиационный парк —73 самолёта.

Джевецкий Степан Карлович (1843—1938) — русский исследователь и изобретатель. Техническое образование получил в Центральной школе искусств и промышленности в Париже. Один из основателей, а с 1882 товарищ председателя воздухоплавательного отдела Русского технического общества. Опубликовал ряд работ по теории полёта птиц и аэропланов. В 1892 предложил метод расчёта гребного винта, послуживший основой теории воздушного винта. Совершил несколько полётов на воздушном шаре, в том числе в 1887 для наблюдения солнечного затмения. Разработал и построил ряд воздушных винтов, ветряков и турбин: в 1912—1914 построил и испытал самолёт с тандемным расположением крыльев. Автор оригинальных конструкций подводных лодок. С 1892 жил в Париже. Был переводчиком сочинений Н. Е. Жуковского на французском языке. Портрет смотри на стр. 205.

Соч.: О сопротивления воздуха в применении к полету птиц и аэропланов, СПБ, 1887; Определение элементов гребных винтов, “Морской сборник”, 1892, т. 251, №9; Теория воздушных винтов и способ их вычисления, Киев, 1910.

Дженерал Дайнемикс” (General Dynamics Corp.) — один из крупнейших военно-промышленных концернов США. Образован в 1952 на базе кораблестроительной фирмы “Электрик боут”, в 1954 присоединил фирму “Конвэр”. Разработкой и выпуском авиаракетно-космической продукции заняты 4 отделения из 14. Концерном созданы боевые самолёты с крылом изменяемой стреловидности: истребитель-бомбардировщик F-111 (первый полёт в 1964, см. рис. в таблице XXXIV) и стратегический бомбардировщик FB-111 (1967). В 1974 разработан опытный истребитель YF-16, послуживший основой для первого серийного варианта F-16A (1976) и усовершенствованной модели F-16C (1984). Основные авиаракетно-космические программы 80-х гг.: производство истребителей F-16 (к середине 1991 в США и других странах выпущено около 3200, см. рис. в таблице XXXVI), крылатых ракет “Томагавк”, ракет-носителей “Атлас-Центавр”, тактических управляем ракет, электронного оборудования; участие в создании опытного самолёта YF-22 (совместно с фирмами “Боинг” и “Локхид”) по программе истребителя ATF, проектные исследования экспериментального воздушно-космического самолёта NASP. На основе истребителя F-16 созданы экспериментальные самолёты YF-16CCV(1976), AFTI/F-16 (1982) и F-16XL (1982, см. рис.). Основные данные некоторых самолётов концерна приведены в таблице.

М. А. Левин.

“Дженерал Электрик” (General Electric Company) — фирма США, выпускающая электронное, электротехническое оборудование и авиадвигатели. Основана в 1882. В 1918 был создан авиационный турбонагнетатель, в годы Второй мировой воины велось массовое производство турбонагнетателей для поршневых двигателей истребителей и бомбардировщиков. Программы разработки авиационных газотурбинных двигателей начались в 1941 с освоения производства ТРД 1-А английской конструкции для первого американского реактивного истребителя Белл ХР-59А. Фирмой был создан и испытан первый американский турбовинтовой двигатель TG-100, велись работы по авиационной ядерной силовой установке. В 1952 началась разработка турбореактивного двигателя с форсажной камерой J79 для сверхзвуковых самолётов (к 1986 выпущено 17200 с учётом производства в других странах). Выпускает газотурбинные двигатели для истребителей, бомбардировщиков, военно-транспортных и пассажирских самолётов (в том числе широкофюзеляжных) и вертолётов. К основным программам конца 80-х гг. относятся: производство турбореактивных двухконтурных двигателей с форсажной камерой F101, F110, F404, турбореактивного двигателя с форсажной камерой J79 и J85, турбореактивных двухконтурных двигателей TF34, и TF39. турбовинтовых и турбовальных газотурбинных двигателей T58, T64 и T700 для военных летательных аппаратов и турбореактивного двухконтурного двигателя CFM56 (с фирмой “СНЕКМА”), CF6 (см. рис.), CF34, CF700, турбовинтовых и газотурбинных двигателей СТ7 и СТ58 для пассажирских и административных самолётов и вертолётов; разработка турбовинтовентиляторного двигателя GE36 UDF (лётные испытания с 1986) и турбореактивного двухконтурного двигателя с форсажной камерой GE37 для американского истребителя ATF 90-х гг. (стендовые испытания с 1987). Основные данные некоторых двигателей фирмы приведены в таблице.

Экспериментальный самолёт F-16XL.

Турбореактивный двухконтурный двигатель CF6.

 

Дзюба Иван Михайлович (р. 1918) — советский лётчик-испытатель, полковник, заслуженный лётчик-испытатель СССР (1961), Герой Советского Союза (1942). Окончил Одесскую лётную школу (1938). Участник Великой Отечественной войны. Выполнил 238 боевых вылетов, провел 25 воздушных боёв, сбил 12 самолётов противника. С 1943 на испытательной работе в Научно-испытательном институте Военно-воздушных сил. Одним из первых освоил технику пилотирования реактивных самолётов. Выполнил более 70 программ испытаний самолётов и спецтехники, 5 программ государственных испытаний опытных самолётов, освоил 117 типов и модификаций истребителей, бомбардировщиков, военно-транспортных и пассажирских самолётов. Испытывал средства спасения лётчика, определял характеристики устойчивости и управляемости самолётов С. А. Лавочкина, системы вооружения на реактивных самолётах Лавочкина, А. И. Микояна и С. В. Ильюшина, катапультную установку на самолёте — летающей лаборатории УТИ-МиГ-15. Обучал лётчиков-испытателей и космонавтов: Ю. А. Гагарина, Г. С. Титова, А. Г. Николаева и др. С 1974 в Главном штабе Военно-воздушных сил Советской Армии. Награждён орденом Ленина, 2 орденами Красного Знамени, Отечественной войны, 1-й и 2-й степени, Красной Звезды, медалями. Портрет см. на стр. 220.

И. М. Дзюба.

ди — принятое в СССР в 20—30-х гг. обозначение двухместных истребителей. Под этой маркой было разработано несколько опытных самолётов (первым был 2И-Н1 или ДИ-1, см. Поликарпова самолеты), а ДИ-6 (ЦКБ-11) конструкции С. А. Кочеригина и В. П. Яценко строился серийно.

диагональный компрессор — см. в статье Компрессор.

Для дальнейшего чтения нажмите кнопку